

White persistent luminescence of silicates doped with Dy³⁺.

Paolini, T. B. ⁽¹⁾, Stefani, R. ⁽¹⁾, Rodrigues, L.C.V.⁽¹⁾, Kodaira, C.A.⁽²⁾, Lourenço, A.V.S. ^{(1)*}, Felinto, M.C.F.C. ⁽²⁾ and Brito, H.F. ⁽¹⁾

- (1) Instituto de Química/ USP-SP, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, SP.
- (2) Instituto de Pesquisas Energéticas e Nucleares, Centro de Química e Meio Ambiente, Av. Prof. Lineu Prestes, 2242, São Paulo, SP.
- * anavl@iq.usp.br

Abstract – This work refers to luminescent phenomenon in Dy^{3+} -doped CdSrSiO₃ long-lasting phosphor. After irradiation by a 254-nm UV lamp for 5 min, the Dy^{3+} -doped CdSrSiO₃ phosphor emits white light-emitting long-lasting phosphorescence after the irradiation source has been removed. Photoluminescence, time-live phosphorescence spectra are used to explain this phenomenon. Photoluminescence spectra reveal that the white light-emitting long-lasting phosphorescence originated from the two mixtures of Dy^{3+} characteristic luminescence.

Long-lasting phosphorescence, a phenomenon due to the thermal stimulated recombination of holes and electrons at traps, which leave holes or electrons in a long-lived excited state at room temperature, is an interesting phenomenon in which the material persists for a long time after the removal of the excitation source [1,2]. Based on this intrinsic merit, much interest was aroused in various rare earth ion-doped crystals and glasses excited by UV or infrared femtosecond laser, and their applications for luminous glass, emergency signs, watches and graphic arts, etc [3].

This present work is aimed at searching for the white light-emitting long-lasting phosphors. The introduction of Dy^{3+} ions into the CdSrSiO₃ host produces a highly dense trapping level, which is responsible for the long-lasting phosphorescence at room temperature. It is considered that the long-lasting phosphorescence is due to persistent energy transfer from the electron traps to the Dy^{3+} ions, which creates the persistent luminescence of Dy^{3+} to produce the white light-emitting long-lasting phosphorescence.

Figure 1: Emission spectrum of the compound

References

- [1] J. Qiu and K. Hirao, Solid State Commun. 106 (1998), p. 795.
- [2] T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc. 143 (1996), p. 2670.
- [3] T. Katsumata, K. Sasajima, T. Nabae, S. Komuro and T. Morikawa, J. Am. Ceram. Soc. 81 (1998), p. 413.