Synthesis of Lanthanum Silicate Oxyapatite by a New Water-based Sol-gel Process Using Na₂SiO₃ as the Source of Silica

Chieko Yamagata¹, Jivalvo R. Matos², Sonia R. H. Mello Castanho¹

¹Instituto de Pesquisas Energeticas e Nucleares, Brazil, ²Instituto de Quimica-Universidade de Sao Paulo, Brazil

yamagata@ipen.br

Lanthanum silicate oxyapatites $[Ln_{10-x}(XO_4)_6O_{3-1.5x}]$ (X=Si or Ge) have recently attracted considerable attention because of their high ion conductivity at low temperatures (700°C). They are promising candidates for SOFCs (solid oxide fuel cells) electrolyte to substitute YSZ (yttrium stabilized zirconia). The synthesis of lanthanum silicates via conventional solid-state reactions requires high temperature (>1600°C) due to the low reactivity of the reagents La₂O₃ and SiO₂. Therefore, developing of a synthesis method in low temperature is an attractive research. In this paper a lanthanum silicate oxyapatite, La_{9.56}(SiO₄)₆)O_{2,33}, was synthesized. Na₂SiO₃ solution, derived from alkali fusion of zircon, and lanthanum nitrate were used as the source of Si and La respectively. The resulted La_{9.56}(SiO₄)₆)O_{2,33} powder was compared with correspondent lanthanum silicate obtained from TEOS, the normally employed source of Si. The oxyapatite phase was observed at 900°C. Techniques such as TGA-DTA, XRD, SEM and BET were used to evaluate the two final lanthanum silicates.