


" ON SOME EFFECTS THAT INFLUENCE THE NEUTRON RESONANCE MEASUREMENTS

R. Fulfaro and R. Stasiulevicius

Divisao de Fisica Nuclear
Instituto de Energia Atomica

Sao Paulo - Brasil

Publicagao IEA n? 150
Outubro - 1967



 Comissio Nacional da Energia Nuclear
* Presidente; Prof, Uriel da Costa Ribeiro

Universidade de Seo Paulo
Reitor: Prof,Dr, Luis Antonio da Geama @ Silva

Instituto de Energia Atdmies
Diretor: Prof. Rémulo Ribeiro Pieroni

Conselho Técnico-Cientifige do IEA

Prof, Dr., José Mourﬁ Gongalves
2 pela USP
Prof, Dr. José Augusto Martins
Prof, Dr, Rui Ribeiro France
: CNEN
Prof, Dr, Theodoreto H,I. de Arruda Souto § pela

Divisbes Diddtico-Cient{ficas

Divisdo de F{sica Nuclear -
Chefes Prof. Dr., Marcello D.S. Sentos

DivisSo de Redioquimica =
Chefe: Prof. Dr, Fausto Walter de Lima

Divisdo de Radiobiologia =
Chefe: Prof., Dr. Rémulo Ribeiro Pieroni

Divisao de Metalurgia Nuclear =
Chefe: Prof, Dr, Tharcfsio D,S. Santos

Divisao de Engenheria Quimica -
Chefes Lic, Aleidio Abrdo

Divisdo de Engenharia Nucleer -
Chefe; Eng? Pedro Bento de Camargo

Divisgo de Operagao e Manuteng@o de Reatores -
Chefe: Eng? Azor Camergo Penteado Filho

" Divisgo de Fisica de Reatores -
Chefe: Prof. Paulo Saraiva de Toledo

Divisgo de Ensivo e Formsgio -



'ON_SOME EFFECTS THAT INFLUENCE THE NEUTRON RESONANCE PIEAéUREMENTS

R. Fulfaro and R. Stasiulevicius

RESDMO

No presente trabalho, os autores apreseatam o céleulo da fungiio ruovlug’io de um es
pectrometro de cristal para néutroms, em opera¢éo num dos canais experimentais do reator ...
1EAR-1, bem como o ecalculo da conteminagao devida a nautrons de segunda ordem para os planos
(111) de um cristal de aluafnio. |

¢

Para avaliar & influéncia d8sses efeitos nas medidas das secgdes de choque total

para neutrons foi considerada a ressoniggip. do ir{dio na energia Eo = 0,654 &V,

A curva tedrica da ressomancie foi calculada pela férmula de Breit-Wigner levando
on conta o alargamento de Doppler para a temperaturs ambiente. Esta curva foi afetada pela
fungao resolugao e calculou-se a contamina¢io de neutrons de segunda ordem, obtendo-se a cur

va final que deve ser observada com o espectrdmetro.

A ressondncia foi medida pelo método da transmissio e os pontos experimenteis con-
cordas com & curva tedrica esperads, indicando uma boa interpretagio tedrica dos efeitos cop

siderados ¢ uma preciss calibragao do aparélho.

RES

On présente le calcul de la fonction resolution d'un spectrométre & cristal em opé
ration & la sortie d'un tube d'irradistiom du reacteur IEAR-1 et aussi le calcul de la conts

rination de neutrons de deuxiéme ordre pour les plans (111) d'um cristal’d’sluminiua,

Pour o’i;l\iér 1influence de ces effets sur les mesures des sections efficaces tota

les pour les meutrons, on a condideré la résonance de l'iridium dams°l'énergie Eo « 0,654 eV,

La courbe théorique de la résomance a été calculée par la formule de Breit~Wigner,
en premnant compte de 1°élargissement Doppler a 1 température ambiante. Cette courbe a &té

affectée par la fonction résolution et on a calculé la comtamimation des meutrons de deuxids




me ordre, en obtenant ainsi wne courbe finele a éire mesurée,

La résonanca & été mesuréd par la méthode de transmission et les points expérimen-
taux sont en accord avec la courbe théorique espérée, ce qui indique une bonne interpréta~

tion théorique des effets considérés et wne cslibration precise de 1'appareil,

ABSTRACT

The calculation of the resolution function of a neutron crystal spectrometer in
operation at a beam hole of the IEAR-1 reactor is presented, as well as the calculation of

the second order neutron contamination for the (111) planes of an aluminium crystal,

In order to estimate the influence of these effects in the neutron total cross

section measurements, the iridium resonance at energy Eo = 0,654 eV, was considered,

The theoretical curve of the resonance was calculated using the Ereit-Wigner
formula, taking into account the Doppler broadening at room temperature, This curve was
affected byythe regolution function; the second order neutron contamination vas celculated,

and & final curve was obta:gne& whose shape uhdwed coincide with the experimental one,

. The i'esonance curve was measured by the transmission method and the experimental
points do agree with the expected theoretical curve, thus indiceting a good theoretical

interpretation of the considered effects and an accurate callibration of the instruments.

I. INTRODUCTION

The moderation of fission neutronms to thermal enefgies
is one of the fundamental processes that must be considered in
reactor design. During thisislowing down process it is possible

that neutron absorption'takés place in capture resonances.

The measured shape of a resonance differs from its
naturél shapé because of the effects of Doppler broadening. The
Doppler>effecpwrg§plts from the thermal motion of target nuclei ,
causing an'effective increase in the width of the resonance as well
as a change in thé;shapé. Since the Doppler effect makes the resomance

absorption cross section a function of temperature, the phenomenonm
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of Doppler broadening is of particular importance in reactor

technology.

Having in mind a Doppler broadening study with variation
of the sample temperature, a program of neutron resonance measure-

ments near 1 eV was established.

This present work is a preliminary study where, using a
crystal spectrometer, the effects that influence the neutron

resonance measurement are estimated.

The effects considered here are: the instrumental resolu °
tion, the thermal motion of the atoms in the target, and the higher-

~order contamination in the reflected beam.

In order to estimate these effects, the neutron resonance
of Ir at energy EO = 0.654 eV was chosen, for two reasons: firstly
because the level has a narrow width, and secondly because the
sample exhibits a high purity (99,99%), which gives a good ac-

curacy in the neutron total cross sections measurements.

. II. EXPERIMENTAL METHOD

The source of neutrons for this work was the Instituto'b
de Energia Atomica swimming pool research feactor operated at 2 MW.
A crystal spectrometer, constructed at the IEA workshop, was used
as monochromator.

In a general way, the spectrometer is simllar to what
has been described in the 1iteraturel’2 3 4.‘Aﬁgles may be read on -
a vernier scale with a precision of 0.01 degree. The supporting
base of the crystal has six degrées of freedom and may be adjusted

manually to optimize the alignment}

The instrument was located close to reactor core in a
radial beam tube. The thermal neutron flux, measured with gold

foils, outside the radial pért, is 4 x 106 neutrons/cmz.sec.




The collimator arrangement is shown schematically in
figure 1, the first collimator in the incident beam and the second
in the Bragg reflected beam, having angular divergence a; = .2270°
and a, = .24540, respectively; both are of the '"Soller" type.

In the measurements described in this paper, the (111)
planes of an aluminium crystal were used for transmission mono-
chromatization with mosaic b = .1590, experimentally determineds,

and interplanar distance d = 2,333 &.

111
The neutron detector is a BF3 proportional counter 1
inch in diameter and 20 inches in length. It is filled to a

10

pressure of 60 cm Hg with BF, enriched in B™" to 96 percent.

The efficiency of the detector can be calculated at any

energy by the formula
e=1- exp [_— NxC E—llzj} )

where N is the number of atoms per cm3 in the counter, x is the
counter length, C is the numerical constant that gives the 1/v
slope of the B10 (n,a) Li7 cross section, and E‘is the enefgy. For
this pafticular counter the values of the constahts are‘N = 2.04 x

X 1019 c:m—3 and measurements of Sutton et al6 give C = 592 x 10-24

for boron enriched to 96 percent in Blo.

An iridium powder’sample, with N = 3.97 x 10_4 atoms/
/barn, was placed in an aluminium confainér and introduced into
the beam in a reprodugibie position. The‘transmission thrqugh the
sample was obtained by measuring the:counting rate &ith the
sample in the beam,‘aﬁd ﬁhe rate 6btained with an identical empty
sample holder in the beam. The baékground was subtfacted from
each counting.‘THé ébntainers were designea to gi&e a transmission
which minimized ﬁﬁe time required to reduce the statistical

7
errors .
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Figure 1 - Schematic diagram of the IEA neutron crystal spectrometer



To avoid the influence on the transmission of the
fluctuations of the reactor power, the transmission measurements
were repeated several times in cycles; according to a routine

designed to cancel linear drifts.

The total cross sections were calculated from the
transmission measurements. The convehtional fdtmula7 has been used
for the errors. The calculations were made.by the IEA IBM-1620

computer,

'III. THEORETICAL CALCULATION OF THE EFFECTS THAT TNFLUENCE THE
NEUTRON RESONANCE MEASUREMENT

"A. THE CROSS SECTION BEFORE BROADENING

' Each resonance represents an excitation state of the ¢
éompéund nucleus formed after the addition of a neutron to a cap-

" turing nucleus.

The total neutron cross section of an element presént-
ing an isolated resonance having negligible resonant scattering

can be expressed in terms of the one-level Breit-Wigner formula ,

‘ _°T - ooﬂrz (EO/E)I/Z E(E - Eo)2 + 1,2]—1 +o., (2)

&

where o,, is the total cross section at energy E, o a is the free

T , ‘ f
atom scattering cross section, % is the cross section exactly at
the resonance Eo, and T is the total width of the resonance at

half-maximum.

The ﬁarameter % is actually a quantity involving the

more fundamental parameters as follows:

2 2
o, = 4 XQ f.gnrn FY /T



o 7.

‘hhere 27 X is the neutron wavelength’at resonance' g is the
statistical weight factor that depends on the spin of the initial
nucleus, Fn = F \JE “and FY, are, respectively, the neutron ane
radiation widthso

Iridium has two resonances near l'evg,.the first- at
energy'Eo = 0.654 eV is due to the isotope Irlgl;‘the second at
energy E = ,1.303 eV is assigned to Ir193 isotope. The'contribu-
tion of each 1evel to the total neutron cross section was calculat
ed using Eq (2)

The contribution l/v from far-away resonances of both

isotopes was considered, calculating from

n ' o
g " g (0.286)2 X 10-'16 ‘3 £ I1n ry ' (3)
1l/v 2.
4w wE r 'Er'

This equation came from the capture term of the Breit—
—Wigner one level formula, making an approximation for E much
bigger than E and T.

The total neutron cross section curve for the first
»resonance of iridium at E = 0.654 eV was constructed by adding
contributions from all resonances appearing in the target material;
previously published9 parameters were used for this calculation,

and the resulting curve, A, is shown in figure 2.

B. DOPPLER BROADENING

1B. Usual Form of 'the Doppler Broadening

The:cross‘section formulae given in the previous section
must now be modified to allow for the thermal motion of the target
nuclei. The first ones that'calied attentionvto the Doppler'effect
in the case of.neutrOn resonances were Eethe and Placzek10 in 1937,

treating the atoms as an ideal gas. -
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The cross section for non-stationary atoms for a given
neutron energy is obtained by averaging the primitive cross sec-
tion over the thermal distribution of velocities of the target

“nuclei.

~ The cross section that would result as a convolution
of the natural line—shape with the Maxwellian Distribution of

velocities was calculated.

The resulting expression for the effect isl1
- 2
. . Q exp | - (Er - Eo) |
a \| E --AZ
o= —2 E° d E (&)
‘;7A : E. - E
0 (——) " +1

r/2
For a free gas the Doppler width A is given by’

A= 2mE K 1*/M)1’2 | ' (5)
where m and M are the masses of the neutron and of the nucleus,

respectively, k the gas constant, and T the sample temperature.

Er is the energy that corre5pond to Vr’ the velocity

of the incident neutron relative to the target nucleus.

Introducing nonjdimensional variables such as

2 (E - Eo)

X = l.,
_ 2 (E_-E)
y T

and

Eq (4) becomes
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\‘E | : |
o(E, ¥) =0, \7 ¥(x,t) (6)

nhere ¥(x,t) is what we shall call the Doppler integral

ti
CY(x,t) = —m———— dy (7N
2 ﬂﬂ t 1+ y2 ~

- 2B. Doppler Broadening for a Solid Absorber

The theory of neutron capture by atoms bound in a

12. In hlS theory

crystal was first considered in 1939 by Lamb
Lamb considered the effects of 1attice binding on the shape of a

pure capture resonance.

Applying the methods of ouantum mechanics; Lamb consideg
ed the Doppler distortion for a solid absorber assuming two limit-
ing cases of lattice binding types' the strong and the weak bind-
ing approximation.

For the case of a strong binding Lamb finds that the

resonance shape has no Doppler broadening.

In the weak binding assumption the shapeaof the broaden
ed line for a solid absorber is the same as for the ideal absorber
given by Eq (6). However, a new definition of A must be introduc-
ed: for the weak binding<crystal, A depends on the average per
idegree of vibration'and not on the sample's temperature as given
in Eq (5). | '

»Applying the Debye model,. Lamb was able to establish a
relationship betneen the average energy per ﬂegree of.vibration of
the crystal and the effective temperature T', which is to be used
in the place‘of T. o ‘
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. Therefore, knowing the Debye temperature of a fiaterial
one is able to determine the sample's effective temperature by the

following'relationl3.

_%:_=?\47_ + 3 (Q/IT) -+ 3 (g/ll (8)
4 [%xp (e/T) - %]

where C = £(8/T) is the atomic heat functiont?.

For iridium T' = 1.04 T.

When the solid absorber is treated as a Debye crystal
in the weak binding limit, Lamb has shown that the requirement

T + A > 28 9)

must be satisfied.

Here I' is the natural width of the resonance as previous
ly defined, A is the effective Doppler width for the crystal, and
@ is the sample'’ s Debye temperature expressed in energy units.

Egelstaff 15 has investigated this requirement in more detail and

his results indicate that the ratio needs only to be

29
greater than approximately 2 before the weak binding model can be

applied with confidence.

The required condition for the appllcation of the ef-
fective temperature model in the iridium resonance at 0. 654 ev,
is not rigorously satisfied. Nevertheless, the application of the
theory of Lamb to account for the Doppler effect that it repree
sents a good approximation for the theoretical Doppler broadened

cross sectiom.

For the iridium resonance at E = 0. 654 eV the Doppler
broadened cross section was calculated using Eq (6), being, also,

added the 1/v contribution of the far-away resonances.

The resulting curve o(E, ¥) is shown in curve B, in
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figure 2,

C. EFFECT OF INSTRUMENTAIL RESOLUTION

If the neutron beam were purely monoenergetic with an
energy E, the value of the total cross section obtained from the
measurements would be exactly the total Doppler broadened cross

section o(E,V¥).

For this ideal situation the transmission, T, through

the sample is given by

T(E, ¥) = exp [:-— N o (E, \Y):| (10)
2

where N is the number of target atoms per cm .

In practice, however, it is not possible to achieve
this condition of a monoenergetic beam, and the instrumental
resolution will cause the measured transmission T, to differ from

R
the true transmission T(E, ¥) as follows:

L T (E,¥) R (E' - E) dE' (11)
J“ R (E' - E) dE' |
(o]

where

4 1n 2

2 &' - 0% | . 12
(A E)

R(E' - E) = A (E')—3°2 exp ~

Eq (12) represents the spectrometer resoiution_function that giveé
the distribution in energy 6f the reflected heutfon beam. The term
(E‘)-3'2 accounts for the reactor spéétral distribﬁtion,"the
crystal reflectivity, and the 1/v variation of the detector ef-
ficiency; A is a numerical constant which will cancel 1in the

normalization performed in Eq (11).




The nominal energy setting of spectrometer is E, and_E:
is the variable energy at which R is evaluated. -‘The width of the
resolution function at half-maximum is AE, and its value is given
by

C ME= 4 dcos 6 (0.280)t B2 a0 (13)

if E is expressed in eV and d is 10 cm units.

A8 is given by

aib2 + aiag + agb2 1/2
A8 = ( 5 2 2 ) (14)
al + a2 + 4b

and represents the full width at half maximum of the instrument

resolution function in terms of distribution in Bragg angle,i.e.,

2
J8) =IKexp | - ﬁ-lﬂ—gié— (15)
(48)

where I is the intensity and K is a numerical constant.

A detailed calculation of the function R(E'- E) and
J(8) can be found in Appendix A.

When the collimators and the crystal are chosen, the
values of al, a, and b are fixed; then the value-of 40 in Eq(l4)

is a constant and a characteristic of the instrument.

For the IEA crystal spectrometer, where the collimators
have angular divergence a; = .2270° and a, = .2454° respectively,
and the aluminium crystal has the mosaic b = .15900, the value of

A8 therefore is A8 = .1670° = 10°'.

From Eq(13) we can determine the resolution R at energy

E.
We have
R=2E - 20 coteo

E




For the collimators and the Al crystal used in this

experiment'
R > 7% at 0.5 eV.

Eq(12) for R(E' - E) may be inserted'in Eq(1l) giving

the transmission T the calculation for Eq(ll) was made by the

R’
IEA IBM-1620 Computer.

The total cross section o that corresponds to TR, was

R’
calculated for our iridium sample (with N = 3,97 x 10 -4 atoms /barn)

using the equation

The curve C, shown in figure 2, reptesents Ope

D. HIGHER ORDER NEUTRON BEAM CONTAMINATION

The higher order contamination in the reflected beam
~ is another effect that influencesthe neutron resonance measurement,

and must be considered.

When a neutron energy is selected by Bragg's law

nt = 2d sin 6 v (16)

the reflected beam contains neutrons of energy E, 4E, 9E, etc ,
corresponding, respectively, ton = 1; 2, 3 etc; however, the
primary'energy E is the only one that interests in transmission

measurements.

The knowledge of the spectral distribution allows the
Calculation of the higher-order contamination in the reflected
beam. It is found in most cases that every order,'except the

second, can be neglected.




The relative intensity between second and first orders

is given by the ratio4

412 (c 0 R AE F),
k= 2 = '
I (e ¢ R AE F)

(a7)

1 1

where the subscripts refer to the order.

Equation (17) may be simplified by using the informa-
tion contained in the Appendix A where the coefficient of Eq (12)

is evaluated.

(e ¥ B), & By 2.7
(G (—E—I)

The enérgy dependence ﬁpon»the detector effi?iency,.in
this éasé, is not approximated for 1l/v, because the créss section
changes sensibly er a smail vafiation of k. The detector vef—
ficiency is given by Eq(l).

Besides this, returning to Eq(13)

3/2

4 d cos 6 E
AE = =—286) A8
AE _ 4d _ o cos O
E - X cos 8 AQ =2 gzafajAe
AE 2 A8 cotg © =2 %?

When comparing orders %? is-constant, so

. Then, Eq(17) beéomes
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I € E F, - . ‘ .

The term F does not dépend on the energy but does de-

pend on the order. It is defined aé F = e_ZM,‘wheré f is théi

M is the Debye-Waller temperéture

crystal structure factor, and e
16 '
factor .

It is readily shown that for any order n, M = nle.

Details for computing Ml can be found in ref. 16,
The ratio of the crystal structure factor forAthe first

and second orders is f2 = 1 for the (111) planes of an aluminium

crystal. f1

Then, Eq(l7a) Becomes
k= — (=) e 1 - (18)

The Debye temperature of‘Al'is 0= 4180 K;'therefofe
if the crystal is used at room tempe;atufe (295°K) the value of
Ml is 0.0414. Numerigal substitution in Eq(18) gives the result

€2

k= — (4

-1.7 e—0.2484 (18a)

'—l

The total cross section at each energy is obtainéd by
measuring the sample transmission, and this value can be computed

from the relationship

% - ;eN°m , (19)

where I is thevintensity‘of the incident beam in the sample,

I= I1 + 12
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being I, and I ‘the intensities for first and second order, re-

_ 1 2
spectively.

Similarly, for the transmitted intensity through the

saﬁélg .

If the incident neutron beam were compbsed only of the

first order neutrons, the measured cross section would be the o

i R
from the preceding . section, i.e., curve C in figure 2
i ; N i I N
e o e | ey
Similarly, for the second order neutron beam
1 .
2 = Ny (21)
i
2
where‘o2 is the cross section at energy 4E.
Eq(20) and Eq(21) give
I, 1
1 72 N
= 7 =e (0, -0,) ;
12 il R 2
. ' Iz '
being k = == , we have .
, I :
1
i ’
Ig - k eN(cR - 02) r
1
: I
; ; L2
I, +1 L, @+3
No = 2 _ 1
e m i1 + 12 i,
- . ’ i. 1 ++—
1" il

. eNGm - eNOR 1+ k ,
: l+kexpN (oR - 02)
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by operating in C with the second order neutron
contamination from the (111) planes of a Al crystal.




_ 1 1+k
O = g Ty 10 [l+kexP N (cR— 02):| (22)

The range of the primary eﬁergy in the case of the
iridium resonance measurement at 0.654 éV, makes it possible to

take 9, = 25 barns9 for the cross section in 4E energy.

The latter Eq(22) corresponds to the Breit-Wigner
natural line shape, as affected by the Doppler effect, the

instrumental resolution and the second order contamination.

The cross section o, is the theoretical value that must

be measured; it is represented in curve D of figure 2.

IV. EXPERIMENTAL DATA AND CONCLUSIONS

The total neutron cross section for iridium was measur-

ed in the energy range of 0.55 eV to.0.8 eV; a reasonable agreement

between the experimental points and the theoretical curve D in

figurevz was found.

"It is not possible to verify all the effecté cqnsidered
in this paper by any direct experimental measurement; however, the
experimental results indicate a good estimative fof the resolution

function, the second order contamination and the used parameters.

The coilimatdr arraﬁgement énd the‘crystal used in the
IEA crystal spectrometer, for this experiment, is not ideal for
providing a monochrbmator system of good intensity .and resolution;
'however, this system is good enough for estimating the already

mentioned effects.

In order to develop accurate Doppler broadening measure-
ments in neutron resonances, the spectrometer resolution must be,
improved. Héving'this aim in mind, collimators with smaller angular

divergences and crystals with narrower mosaic structure are being:



designed and sought, so that A0, which defines the resolution, in

Eq (14, will become smaller.

A technique for the elimination of the second order
neutron contamination in the beam was developed by use of a tel-
lurium filter. Tellurium has been chosen because it is pratically
transparent for neutrons having an energy lower than 1 eV and
because it absorbs neutrons in the region near 2.5 eV, which is

the energy range of second order neutrons having an energy 4E.

With this technique we succeeded in ellmlnating the
second order effect in the iridium resonance at E = 0 654 eV ;
thus the measured cross sections are coincident with the . curve or
in curve C of figure 2.

We are now developing the optimization of the filter's
thickness; the obtained results will be published in a later

» paper.

The elimination of higher order effects constitutes
“another confirmation of the good interpretation of the effects
that influence the measurement of a resonance, presented in this

paper. .




APPENDIX A

IA. DERIVATION OF THE RESOLUTION FUNCTION: IN TERMS OF DISTRIBU-.
TION IN BRAGG ANGLE

‘(ceee a %A a, # b)

It is- possible to derive an approximation to the resolu
tion functioh, from the geometrical arrangement of the spectrome-
ter17. The experimental arrangement considered here is for two '
"Soller" collimators - the first one in the incident beam and the

other one on the spectrometer arm.

Collimators: The intensity of the beam emerging from the first col-
limator, as approximated by a gaussian distribution,

is ‘given by17
I(#) = I, exp [— <¢1/a1)2] | B S

where ¢1 is the angle between the individual incident ray and the

central incident ray‘and

2

2(1n 2)1/2

“1

Similarly, for the second collimator
A@) = e | -0, 0] (A.2)
2’ *P 2l ’ .

where A is nérmaiized‘to unity.

The collimator divergence a is determined by the ratio
of the width s to the length 1 of the individual collimator chan-

nels; i.e., a = s/1.

ngstal::The crystal considered as composed of mosaic blocks each



Figure A.l - Schematic arrangement of neutron beam collimation

of them individually perfect, but oriented in a distribution about
an average position17. Let us assume that the projections on the
horizontal plane of the normals to any given set of crystal planes

have a gaussian distribution, e(n), where
o(n = R (B) exp [ (n/8)* :] (A.3)

where n is the angle between the ind1vidua1 mosaic block and the

central mosaic block and ' f




b
2 (In 2)

w
i

1/2

ﬁhere'b is the full wi&th at half-maximum of the aistributibn.

Let us assume that the signs of ¢1 and n are chosen so

that Brégg angle would be increased when ¢1 and n are positive.

Thds, the angle through which any individual ray is

refiected is 9;, where
8' =96 + ¢l + n , ‘ (A.4)

e béing the angle for a central ray reflected from a ééhtral mosaic
block. ’ '

Let us define § = 8' -'8 and from figure A.1, we have

0+¢ +n=06+40,-

e' = :
,5‘=¢1+n;6=¢2—n _ (A.5)
°1=6"v"‘¢2=6+”

The probabilify fér a neutroﬁ passing through the first
collimator qf‘being reflected by'the crystal and then passing
through the Secdndvcollimator to the detector may be‘expressed as
a function of § '
AR b
v ¢l o .

J(8) = I(6,) © (n) A(,) d @) (A.6)
- Cgra . B ‘ -
1

Inserting Eqs(A.l—&) in Eq(A.G) and changing the varia—

ble to n we obtain '
o ra

(8 = IR [ " dn exp - [(5 8=ny2 , ) + &0 + “)2] . (A7)
| ° %1 % |

S
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Taking only the exponent in Eq(A.7)

, | 2 2 2
A 56-n22+n2+(6+n) :(62-26n+n)+n2+(52+‘26n+n)'~=-
o2 2 2 2 ) 2
) %1 : ‘ %2

%

252 (62 _ 26 + n2) + n2 o o + 0y 8 (87 + 260+ 0 )
B ai 82 ag ‘ : ;
making
A ags_z + aiag +‘0€32 ’
28 = 28° En?iﬁ - a‘gd] ’ (A.8)
cei [@2ea]
and D =.ai82a§ >

- the integral becomes

C
’ An? +213n+c "+2 ta
dn. exp - dn exp - D/A

- 00

L o B2
o raBra o e [ D2
J} [“ A T A Azil " DA J " D/A
= | dn exp - D =e dn e |

/A

[+ ]
-0

Making F
B _ . D_ 1 :
n + N X K e az and

. dx = dy, the latter integral becomes

-a‘x : ]
=2[ e dx = 2.‘-XI——;—= -D;\’l.

(o}



the expression (A.7) becomes

Lo [CA-B]
o J(8) = \l Du .  (A.10),

Taking only the exponent ‘and substituting the values given in
(A.8) for A, B, C and D, we have

2
ca-8%_ 1 [[22.2, L2.2 2.2
DA - DA [% 8" (ay + i] (o 2B + o “ o 1B ) = B8 (g - ay)

2.2 ,
B8 2 2 22 22 2,20 2,2 227 _
= Sh l:(ocl + az) (aZB + o0, + alB ) , 8 (al 0‘2) ] =
8%t 222 4 2 42 42 22 222
= DA (qla28v + a0, + alB‘ + aZB + ala2+ alotzB
2 4 222 2 4
- By + 2800, - Bay) =
52 422 2 2.4 2 42
= pa (opf o hemb 4 oapeEt) =
422 2 2.4 2 42
) _6_2_ (o azB + lfalazB + -0 oy 28 )
T A 2 282 =
#1827
2 2 72
52 ) (al + 48 ;i- az,)
= 2 22 . 22 .
(a 8" + g0, + alB )

Going back to Eq(A.10) and taking the coeffiéient, we have

22

2
bnm _ _1/2 2
2 - v (=3 2
1
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. VA 1,12

1 1
7t 2
b

Thus, Eq(A.10) becomes

_ A 2,2 2, 2-
~ 1/2 1 /2 (ag + o, +487) &
J(8) =I R ( ) exp -
oo i, 1, 1 (GZBZ " 2a2 + a262)
B 2 o g2 2P T %% T Y
1 %
(A.11)

Substituting the expression for al,_azland B, we obtain

| 2
3) = K exp | - HBEE (A.12)
(a 0)

This Eq(A.12) represents the instrument resolution fung
tion in terms of distribution in Bragg angle, where I is the
intensity, K is a numerical constant and A6 is the full width at
half-maximum of the distribution J(8).

2

2,2 b

a,b- + aia

2
1 2+a
2 2

2

1/2

2
2
) (A.13)

AR = (

a, + a, + 4b

1

IT.A ENERGY DISTRIBUTION OF THE MONOCHROMATIC BEAM

Let us16 now tranéfbrm Eq(A.lZ) to a distribution in

energy. The equation may be rewritten - as

; " 2
3(8) = IK exp - {:“‘1“ 2 (92 = 8) i} . (A.12a)
(48) '

Taking only the eipoﬁént in Eq(A.12a), we may have

A® and & =06' - 0 in terms of energy.



given by

with

since

Bragg’é law for the first-order reflection (n=l) is

-1/2

=2dsin @, with ) = CE » where C = 0.286.

Let us assume A8 = f(E). From Bragg's law we have

‘AA = 2d cos QJAQ ’

= - g- 3;3/2’AE SR

- < E;3/é AE = 2dcos 40 ..
AD - C/z g3/2 pp

24 cos'Gl , N

 Now let us assume § = f(E,E'). We have

c@h M2 - 24d4sine
c®2 = 2dstne
(E')-l/2 --)(E)_l/2 = '%% (sin ©' -»siﬁ 0)

(sin ©' - sin 8) = 2 sin 1/2 (8' - ) cos 1/2 (8' + )

&

(9"- 6) = § < 20 minutes of arc, i. e, 5 < 240

I

(tw1ce the full width at half ‘maximum of the distribution in Bragg

given by angle Eq(A 12)

cos l/2x(é' +19)

Thus, 2 sin 1/2 (6' - 98) = (o - 9) ‘ and

cos 8 ; we.get

1t

L]

(sin 6' 2 sin 6) ' - 9) cos 6.
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So, we obtain
D A 24 8" -0) cos 6

. ¢ e )1/2 (E)'l’l
= (Q - 8) = 2d cos @

5

Substituting A® and & in the eprnent of Eq(A.12a), we

have ,
':16"111 2 E(E n-i/z 1/2] ]
e 2 3
(AE) E
But
2 —
3 EE.)-1/2_(E)—1/2] -8 [y - __._2__1_/_5 + ¢ )] -
| R L (EE'") |
Ezl[( %') 2( E‘)1/2 1] =k E_ ¢ E )1/2] .
- A Taylor s expansion of (E/EY) 1/2 about E' = E gives
(E/E )1/2 1 1 (E'-E)+. ..

All higher terms are negligible in our case. .

Then, ‘the ekponent becomes

|:_‘L_1_n_.2% (&' - E)z} (A.14),
(AE) ’ , L . -

Let us considerer now the coefficient in Eq(A.12a).

The energy dependence of the observed neutron intensity

distribution, may be expressed in the formlsa

I(E') = Aec@ R AE, (A.15)
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where A is a numerical constant, € is the detector efficiency, @
is the spectral distribution of the reactor, R is the reflectivity
of the crystal, and AE is the resolution width of the spectrometer,

Since the expressions for € and AE are known, the
energy dependence of the product grR ='—%§ can be- determined. The
inten31ty above 0 5 eV was measured and corrected for e and AE; a

least squares fit to the experimental values of I/eAE gives

gr aE'_2°7 (see figure A.2).
The energy dependence I(E' )a(E ) 3.2 is given by
Eq(A.15) with OR o(E") 27 and € a(8')"° |
Equation (A.12a) may be rewritten as
» R(E' - E) = AGBD % exp - [ 2222 (&' - p? |, (a.16)
' (aE)? _

_ This Eq(A. 16) tepresents the resolution function when
the energy setting of the spectrometer is E. E' is the variable
energy at. which R is evaluated and A is a numerical constant. The

width of the resolution function at half maximum is AE, and its

value is given by

-1 3/2

AE = 4 d cos 6 (0. 286) A0 (A7)

if E is expressed in eV and d in 10_8 cm  units,
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Figure A.2 - The neutron intensity I as a function of energy.
The curve was corrected for detector efficiency ¢
and resolution width AE. The least squares fit
shows that §R a E2.7,
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