

THERMAL NEUTRON DOSIMETRY BY PHOSPHOR ACTIVATION

M. R. MAYHUGH, S. WATANABE and R. MUCCILLO

INSTITUTO DE ENERGIA ATÒMICA Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITARIA "ARMANDO DE SALLES OLIVEIRA" SAO PAULO — BRASIL

THERMAL NEUTRON DOSIMETRY BY PHOSPHOR ACTIVATION*

M.R. Mayhugh, S. Watanabe and R. Muccillo

Divisão de Física do Estado Sólido Instituto de Energia Atômica São Paulo - Brasil

> Publicação IEA Nº 258 Dezembro - 1971

^{*} Presented to the Third International Conference on Luminescence Dosimetry, Rist Denmark. October 1971.

Comissão Nacional de Energia Nuclear

Presidente: Prof.Dr. Hervásio Guimarães de Carvalho

Universidade de São Paulo

.

Reitor: Prof.Dr. Miguel Reale

Instituto de Energia Atômica

Diretor: Prof.Dr. Rômulo Ribeiro Pieroni

Conselho Técnico-Científico do IEA

Prof.Dr. Renato Helios Migliorini)Prof.Dr. José Augusto Martins)Prof.Dr. Rui Ribeiro Franco)Prof.Dr. Theodoreto H.I. de Arruda Souto)pela CNEN

Divisões Didático-Científicas

Divisão de Física Nuclear -Chefe: Prof.Dr. José Goldenberg

Divisão de Radioquímica -Chefe: Prof.Dr. Fausto Walter de Lima

Divisão de Radiobiologia -Chefe: Prof.Dr. Rômulo Ribeiro Pieroni

Divisão de Metalurgia Nuclear -Chefe: Prof.Dr. Tharcísio D.S. Santos

Divisão de Engenharia Química -Chefe: Lic. Alcídio Abrão

Divisão de Engenharia Nuclear -Chefe: Engº Pedro Bento de Camargo

Divisão de Operação e Manutenção de Reatores -Chefe: Eng^o Azor Camargo Penteado Filho

Divisão de Física de Reatores -Chefe: Prof.Dr. Paulo Saraiva de Toledo

Divisão de Ensino e Formação -Chefe: Prof.Dr. Rui Ribeiro Franco

Divisão de Física do Estado Sólido -Chefe: Prof.Dr. Shigueo Watanabe

THERMAL NEUTRON DOSIMETRY BY PHOSPHOR ACTIVATION

M.R. Mayhugh, S. Watanabe and R. Muccillo

ABSTRACT

Three common thermoluminescent phosphors, $CaSO_4:Dy$, $CaF_2:Dy$, and $CaF_2:natural$, have been examined to determine the feasibility of their application in thermal neutron dosimetry. Basically, the phosphor is exposed to thermal neutrons (and other radiations) causing activation of nuclei in the phosphor. Next, the phosphor is stored to undergo self-irradiation from the internal radioactive nuclei, in this case all beta emitters. Later one reads the thermoluminescence induced by the beta emission during storage. This reading depends on the original neutron exposure, and could thus provide a dosimetry system. The phosphors contain suitable isotopes 44Ca or 164Dy (and 34S). Limits for the lowest detectable fluence were determined by extrapolating results from high fluence measurements. Using the decay of 165Dy (2.3 h half-life) the lowest detectable fluence is estimated to be $5 \times 10^7 n/cm^2$. Using 45Ca decay (165 d half-life), this limit is raised to about $5 \times 10^{10} n/cm^2$. Methods for improvement are discussed.

INTRODUCTION

Detecting thermal neutrons in mixed radiation fields necessarily relies on the neutron's nuclear interaction with the detector. The useable nuclear interactions might be roughly divided between those which happen rapidly, therefore leaving their mark during irradiation, and those of simple activation wherein the product is detected after irradiation. An example of the rapid type is the $^{6}\text{LiF}/^{7}\text{LiF}$ thermoluminescent system which detects¹ the neutron by the energy deposited from the (n, α) reaction in ^{6}Li . The ^{7}LiF is used to measure and correct for the energy deposited by the other radiations. Metal foils provide an example of detection by simple activation. In this case the neutrons produce radioactive nuclei in the foil, and these are later detected upon their disintegration, usually by beta counting. This technique requires no correction for effects of other radiations.

A thermoluminescent system based on simple activation, like foils, has been studied earlier at this laboratory.2,3 Natural CaF₂ was exposed to thermal neutrons in a mixed field, the neutrons causing activation of 44Ca to 45Ca, and the other radiations inducing thermoluminescence (TL). Next, the samples were annealed to eliminate the TL induced during irradiation, and then they were stored to undergo self-irradiation as betas are emitted from the radioactive 45Ca. Finally, the TL was read after a suitable storage time. This final TL reading is related to the number of disintegrations occuring during storage which in turn depends on the original neutron fluence. Like foils, the signal is independent of the other radiations in the mixed field provided that the crystal does not suffer permanent radiation damage. An advantage over foils is that integration of the decay betas occurs outside the detecting apparatus.

Herein we further examine the feasibility of using phosphor activation as a thermal neutron dosimeter. Our purpose is to establish the lower limits for the detectable fluence with CaF2:natural, and to extend the study to CaSO4:Dy and CaF2:Dy. The ¹⁶⁴Dy in the latter two phosphors might provide a thermal neutron dosimeter useful in accident situations.

EXPERIMENTAL

The CaF₂ was collected from a mine located in Santa Catarina State, Brazil and was ground and seived through 80 onto 200 mesh Tyler screens for use. This powder can be very

sensitive to light so that a 10 second exposure to incandescent room light could be detected. Since work under darkroom conditions was not convenient, the samples were annealed in air for 45 min at 570°C whereupon the light induced TL was just detectable after a 10 min exposure to room light. Sensitivity to gamma-rays is also reduced by the annealing treatment. Several batches of about 2 grams each were prepared and two were selected for further study on the basis of their similar response to gammas. Light was normally avoided except for subdued room light during the reading process.

The CaF₂:Dy (TLD-200) and CaSO₄:Dy samples were purchased from Harshaw Chemical, the former stated to be 80 to 200 Tyler, and the latter found to pass 80 mesh and not 200 mesh. The CaF₂:Dy was annealed at the highest reading temperature before use, nominally 400°C. The CaSO₄:Dy powder was initially annealed 90 min at 700°C, then at 400°C for reuse.⁴

Gamma irradiation was at two meters from a 40 Ci¹³⁷ Cs source, and mixed field irradiations occured at a pneumatically served station alongside the core of IEAR-1, the swimming pool reactor located at this Institute. The neutron flux at this station is about $2 \times 10^{12} \text{ n/cm}^2$ -sec as determined by gold foil activation measurements. Samples were exposed in cylindrical polyethylene capsules having a 1 mm wall and 3 mm inside diameter.

Glow curves were recorded as photocurrent against time on two Harshaw model 2000 systems, both with the phototubes at room temperature. The relative sensitivity of the two machines was compared by reading identically treated LiF dosimeters in both instruments. All measurements in this work were made by dispensing a fixed volume of powder. The corresponding masses are $CaF_2:Dy$, 20.1 mg; $CaSO_4Dy$, 18.9 mg; and $CaF_2:natural$, 20.7 mg, with the total fluctuation at about 0.3 mg. Although the Harshaw readers do heat the sensing thermocouple linearly, a particular peak's position is not reproducible unless the reading cycle is rigidly controlled: time of initiation, time of termination, and time of drawer open and close. Since these conditions were not met for our measurements, relative peak positions between different glow curves are only approximate. The heating pan's temperature was determined for a typical cycle by spotwelding a thermocouple to an old pan and registering the temperature against time. This temperature curve is not strictly linear, as reflected by the slight nonlinearity in the temperature scale of Fig. 1.

RESULTS AND DISCUSSION

a) Gamma-Ray Irradiation

The TL induced by a one R gamma exposure is shown in Fig. 1 for equal volumes of CaF₂:Dy (dot-dashed line), CaSO₄Dy (dashed line), and CaF₂:natural (solid line). The shapes of the glow curves are similar to those observed by others.^{4,5,6} For CaF₂:Dy and CaSO₄:Dy the height of the highest peak was used as a measure of the TL. For convenience, the three peaks in CaF₂:natural were labled 1, 2, and 3 in ascending temperature order, and normally changes in both peaks 2 and 3 were followed, again using the peak height. On this basis CaF₂:Dy gives about 30% more TL than the same volume of CaSO₄:Dy, as shown in Fig. 1. The response of CaF₂:natural is about ten times smaller; hence, its glow curve has been increased a factor of ten in the figure. The response of CaF₂:natural might be increased if the high temperature annealing were in N₂ and not air.⁷

b) Beta-Ray Irradiation from Internal 45Ca (and 35S)

When calcium componds are exposed to thermal neutrons, some of the 44 Ca (σ = 1.1b, natural abundance = 2.06%) is activated to 45 Ca a beta emitter with a 165 d half-life. To observe our phosphors' response to this internal activity, we irradiated a sample of each for 1 min in IEAR-1. Several days later, phosphor was placed in the reading pan and heated one

minute at the maximum temperature, nominally 400°C. (The photo tube was inactivated during this heating, otherwise the high ligh levels spoil the subsequent low level readings). The samples could then be read at various intervals to determine the response as a function of the self-irradiation time. This technique has the advantage that spurious luminescence is largely eliminated since the powder is not handled between readings.

.

The TL induced by a 1 R exposure to 137Cs gamma. Dot-dashed line, CaF₂:Dy. Dashed line, CaSO₄:Dy. Solid line, CaF₂:natural.

The responses of the three phosphors are shown as a function of the self irradiation time in Fig. 2. In contrast to gamma irradiation, CaSO4:Dy gives about 5 times more TL than either CaF₂:Dy or CaF₂:natural (peak 3). The shapes of the glow curves are largely unchanged from those shown in Fig. 1, although peak 2 in CaF₂:natural is relatively smaller compared with peak 5, as indicated in Fig. 2. Some of the response in CaSO4:Dy can be attributed to ³⁵S (88 d half-life) created during irradiation from ³⁴S (σ =200 mb, natural abundance = 4.22%). Assuming that the TL is proportional to the total decay energy times the number of disintegrations, one finds that the ³⁵S contribution in CaSO4:Dy would be about 70% that of ⁴⁵Ca during the first 10 days. Therefore, considering only the ⁴⁵Ca decay, CaSO4:Dy is about 3 times more sensitive thant the other two phosphors. (We suppose throughout that interactions with fast neutrons are negligible.) The greatly increased relative response of CaF₂:natural may correlate with an increased sensitivity to light. (See below.) The linear response is expected in all cases since the times are short compared with the half-lives.

Any application of these materials to high fluence dosimetry requires knowing the response as a function of irradiation time (i.e. fluence). The linear response in Fig. 2 leads us to expect a linear behavior with number of disintegrations and hence with neutron exposure as well. Since samples exposed to high fluence cannot be reused, verifications of the response

concentrated on CaF2:natural because it is inexpensive. In a typical experiment, samples of CaF2:natural were irradiated for 0.5, 1, 2, 4, and 6 min in IEAR-1, and then after several days they were annealed at 400°C, stored in capsules, later read, annealed again, stored for a different time, read, and so forth. In Fig. 3 the heights of peak 2 and 3 are shown as a function of the original irradiation time, for readings taken after 16 h storage. The response is linear forpeak 2, as expected, and peak 3 also appears to respond linearly though there is more fluctuation. The high exposure inherent in the irradiation increases the light sensitivity of CaF2:natural the order of 10 times. This increase does not depend strongly on irradiation time 0.5 to 6 min, and probably corresponds to the filling of deep traps originally emptied by annealing. Filling such deep traps could cause the increased relative sensitivity of CaF2:natural to internal betas.⁶

In any case, the increased light sensitivity cannot account for the poor reproducibility generally encountered in these experiments. (Figure 3 is the best run.) Typically two out of five capsules, either with ascending or identical irradiations, would display unsuitable response despite similar handling of all samples. Sometimes peak 3 would be at about the expected level, but peak 2 much higher than expected, and sometimes both peaks would be higher than expected. Similar problems were not encountered with CaF₂:Dy and CaSO₄:Dy, but these were not used extensively.

Despite these problems, we can establish a limit for the lowest detectable fluence by making the linear extrapolations implied in Figs. 2 and 3. For CaSO4:Dy the signal after 0.5 h and 1 min irradiation (Fig. 2) is about 9 times larger than the smallest detectable one. Since the fluence in this case is about 1.2×10^{14} n/cm² we conclude that for 0.5 h storage the lowest detectable fluence would be about 1.3×10^{13} n/cm². To detect lower fluences the storage time must be increased, although this recourse also has limits. For these long half-life decays the fundamental limit is that the internal activity must induce TL at a rate comparable to that due

to back-ground radiation and natural internal activity. Typically, this background is equivalent to the order of 0.5 mR per day, and we rather arbitrarily define the detection limit as 20% above the background, or the equivalent of 0.1 mR per day. The growth observed for CaSO4:Dy in Fig. 2 is the gamma equivalent of about 6.8 mR/h. Reducing this rate to 0.1 mR per day implies a reduction of the detectable fluence to about 4×10^{10} n/cm² (40 rem). For CaF₂:Dy the value would be about 2.5 x 10¹¹ n/cm² (5 times less TL per neutron, 30% higher sensitivity to back-ground). These estimates are only valid if the sensitivity to back-ground remains unchanged after the neutron exposure. Since the relative sensitivities change this may not be the case. The CaF₂:natural can be supposed to change sensitivity, as evidenced by changing light response.

Fig. 3 The TL as a function of the original irradiation time for a 16 h storage time. (This data is not typical - see text).

In any case the lowest detectable fluence of 4×10^{10} n/cm² (about 40 rem) for CaSO4:Dy can be considered as an order of magnitude boundary for use of Ca (and ³⁴S) activation as a dosimeter. Isotope enrichment could provide an improvement by a factor of about 45, and storage in low background environments could also improve sensitivity. Employing this system at high fluence may be useful since other TL systems saturate. Exposing TLD-100, 600, and 700 1 min in IEAR-1 gives glow curves clearly in the saturation region, although the curve's shape might still give the absorbed dose.⁸ To reach the low fluence region useful for personnel dosimetry, a method must be found to obtain more TL per disintegration, or the system must rely on a different isotope.

c) Beta-Ray Irradiation from Internal 165Dy

Like 44Ca, 164Dy (σ = 2600b, natural abundance = 28.2%) can produce TL after activation to 165Dy, the latter a beta emitter with a 2.32 h half-life. To observe TL due to decay of this isotope, a recently irradiated sample was placed on the reading pan and read every

half-hour, without moving the sample. Figure 4 shows the decay in the induced TL as a function of time elapsed since a 1 min irradiation in IEAR-1. Each point for CaFo:Dy is multiplied by 10 to eliminate overlap of the two curves. The decay clearly follows the 2.32 h half-life for ¹⁶⁵Dy which is indicated by the solid lines. In the final stages both samples leave the exponential decay as longer half-life isotopes begin to influence the response. For CaSO₄:Dy the experimental points are initially slightly above the ¹⁶⁵Dy decay line, indicating that another short half-life impurity may be present. Extrapolating to the irradiation time, and comparing with the 45Ca results shown in Fig. 2, we can conclude that in the first 0.5 h the 165Dy decay produces at least 7 x 103 more TL than 45Ca. In one day the 165Dy decay would produce approximately 1×10^3 more TL than 45Ca. This would lower the limit for the detectable fluence to about 4×10^7 n/cm² (40 mrem) for either CaSO₄:Dv or CaF₂:Dv (30%) higher), again supposing that the sensitivity to background radiation is not changed. Also, we have supposed that there is no time delay between irradiation and the start of storage. In practice this could only be realized by irradiating at high temperature to eliminate the intermediate anneal. Finally, since this case is not just a comparison of background and self-irradiation rates, the phosphor must be sensitive enough to detect the 0.1 mR supposed as the daily detection limit.

Fig. 4

The TL induced in a 0.5 h self-irradiation as a function of time since the original irradiation. The solid lines represent decay with a 2.32 h half-life.

Several improvements on the 164Dy system are possible. A factor of about 3 could be obtained by isotope enrichment. More important, the Dy concentration might be increased, or the system might be changed to a mixture of some Dy compound and a TL phosphor. Significant interaction would be expected between the two powders since the maximum beta range is about 2.1 mm (in CaSO₄).⁹ (Similar interaction from ⁴⁵Ca betas is small, as we have observed, because the maximum range in CaSO₄ is about 0.15 mm.) A mixture of Dy₂O₃ and LiF, for example, would have the advantage of being reuseable, even after exposure to high fluence.

RESUMO

Foram examinados três fósforos termoluminescentes comuns, CaSO₄:Dy, CaF₂:Dy e CaF₂: natural, afim de determinar as suas aplicabilidades na dosimetria de nêutrons térmicos. As amostras são expostas a nêutrons térmicos (e outras radiações), que ativam alguns dos núcleos desses fósforos. Em seguida, as mesmas são armazenadas, havendo auto-indução de termoluminescência devido ao fato das amostras serem irradiadas com raios beta dos núcleos ativados. A termoluminescência é então medida e, como o seu valor está relacionada com a exposição inicial de nêutrons, pode ser utilizada para dosimetria. Os fósforos contém núcleos aproveitáveis de 44Ca ou 164Dy (e 34S). Os limites de fluência detetável foram determinados extrapolando-se os resultados em fluências mais altas. Considerando o decaimento de 165Dy, com meia vida de 2,3 horas, calcula-se que a fluência mínima detetável seja da ordem de 5 x 10⁷ n/cm². No caso do decaimento de ⁴⁵Ca de meia vida 165 dias, êste límite aumenta para aproximadamente 5 x 10¹⁰ n/cm². Possíveis melhoramentos são discutidos.

RÉSUMÉ

Trois phosphors thermoluminescents communs, CaSO₄:Dy, CaF₂:Dy et CaF₂:naturel ont été étudiés afin de déterminer la possibilité de leur application en dosimetrie de neutrons thermiques. Tout d'abord, le phosphore est exposé aux neutrons thermiques (et à d'autres radiations) provoquant l'activation des noyaux dans le phosphere. En suite, le phosphore est stocké pour subir une self-irradiation aux noyaux internes radioactifs, dans ce cas, émetteurs beta. La thermoluminescence induite par l'émission beta pendant le stockage depends de l'exposition initialle des neutrons, et peut ainsi tournir un système de dosimetrie. Les phosphores contiennent les isotopes utilisables 4^4 Cq ou 16^4 Dy (et 3^4 S). Les limites pour le plus faible flux detectable furent dèterminés par extrapolation des rèsultats des mesures de haute flux. En utilisant la décroissance de 16^5 Dy avec le periode de 2,3 heures, le plus faible flux detectable est estimé à environ 5×10^7 n/cm². En utilisant la décroissance du 4^5 Ca de periode 165 jours, cette limite est d'environ 5×10^{10} n/cm². Des mèthodes d'amelioration sont discutées.

REFERENCES

- J.R. Cameron, D. Zimmerman, G. Kenney, R. Buch, R. Bland, and R. Grant, Health Phys. 10, 25 (1964).
- R. Muccillo and S. Watanabe, Presented to the Health Physics Society Meeting, Chicago, 1970.
- R. Muccillo, Master's Thesis, Universidade de São Paulo, São Paulo, Brasil, (1970) (unpublished).
- T. Yamashita, N.Nada, H. Onishi and S. Kitamura, Proc.Int.Conf.Luminescence Dosimetry, 2nd., Gatlinburg, Tennessee, September 1968.
- 5. W. Binder and J.R. Cameron, Health Phys., 17, 613 (1969).
- 6. E. Okuno and S. Watanabe, these proceedings,
- 7. M.J. Aitken, same proceedings as Ref. 4.
- 8. F.S.W. Hwang, J. Phys. D 4, 598 (1971).
- 9. Kobetich and Katz, Phys. Rev. 170, 170 (1968).