White light emission of the single-phased CaWO₄:Tb³⁺,Eu³⁺,Dy³⁺ materials prepared by an environmentally friendly method

Hermi F. Brito^{1,*}, Helliomar P. Barbosa¹, Maria Claudia F.C. Felinto², Oscar L. Malta³

¹Institute of Chemistry, University of São Paulo, São Paulo, Brazil

²Chemistry Research Centre and Environment, IPEN, São Paulo, Brazil

³Dept. of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil

* e-mail: hefbrito@iq.usp.br

Trivalent rare earth (RE³⁺) doped tungstates [WO₄]²⁻ host matrix offers possibility to design new photoluminescent materials.¹ Nowadays, there is an increasing interest of WLEDs to replace the conventional fluorescent lamps due its environment-friendliness and tuneable colours.^{2,3} Here we report preparation as well as the spectroscopic properties of the new highly luminescent white emitting materials Tb³⁺/Eu³⁺/Dy³⁺ triply-doped in CaWO₄ matrix. The materials were prepared by coprecipitation method at room temperature with stoichiometry aqueous solutions of Na₂WO₄, CaCl₂ and RECl₃ (RE³⁺: Tb, Eu, Dy with 0.5 to 5.0 mol% of the Ca²⁺ amount). The RE³⁺ doping concentrations were identical for each rare earth ion in the range from 0.5-5.0 mol%. The XPD measurements revealed the as-prepared CaWO₄:xTb³⁺,xEu³⁺,xDy³⁺ (x: 0.5-5.0 mol%) particles

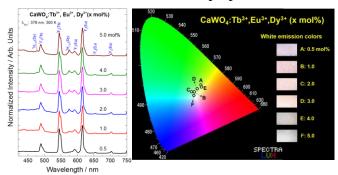


Fig. 1. Left) Emission spectra; right) CIE color coordinates of the $CaWO_4:Tb^{3+},Eu^{3+},Dy^{3+}$ (0.5–5.0 mol%) phosphors under excitation @378 nm.

belong to the tetragonal scheelite phase with $I4_1/a$ (#88) space group. The average crystallite sizes are ~11 nm.

The white luminescence emission arising mainly from the ${}^5D_0 \rightarrow {}^7F_2$ (Eu³⁺), ${}^5D_4 \rightarrow {}^7F_5$ (Tb³⁺) and ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ (Dy³⁺) transitions at 614 nm (red), 545 (green) and 488 (blue), respectively (Fig. 1). The emission lifetimes of the 5D_0 , 5D_4 and ${}^4F_{9/2}$ emitting levels were and their values are reduced when comparing the ratio from 0.5-5.0 mol% of the RE³⁺ ions, respectively. The results indicate the

presence of energy transfer processes between RE^{3+} . These values could be assigned to non-radiative energy transfer contributions of the $Dy^{3+} \rightarrow Tb^{3+}$, $Dy^{3+} \rightarrow Eu^{3+}$ and $Tb^{3+} \rightarrow Eu^{3+}$ systems due the cross relaxation. The CIE diagram (Fig. 1 right) exhibits emissions whitish colour indicating that these materials could be suitable for solid state lighting technology.

- 1. Kodaira, C. A.; Brito, H. F.; Malta, O. L.; Serra, O. A.; J. Lumin. 2003, 101, 11.
- 2. Barbosa, H. P.; Kai, J.; Silva, I. G. N.; Rodrigues, L. C. V.; Felinto, M. C. F. C.; Hölsä, J.; Malta, O. L.; Brito, H. F.; *J. Lumin.* **2016**, *170*, 736.
- 3. Smet, P. F.; Parmentier, A. B.; Poelman, D.; J. Electrochem, Soc. 2011, 158, R37.

CNPq, CAPES, FAPESP.