White light emission materials based on simultaneous Tb³⁺, Eu³⁺ and Dy³⁺ doping in CaWO₄ single-phased

<u>Helliomar P. Barbosa</u>¹, Ivan G.N. Silva¹, Maria Claudia F.C. Felinto², Ercules E.S. Teotonio³, Oscar L. Malta⁴, and Hermi F. Brito¹

 ¹Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
²Nuclear and Energy Research Institute (IPEN-CQMA), São Paulo, SP, Brazil.
³Dept. of Chemistry, Federal University of Paraiba, João Pessoa, PB, Brazil.
⁴Dept.of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil. hbarbosa@iq.usp.br

Tungstates activated by trivalent rare earth ions (RE³⁺) can be used for many optical devices [1]. Over the last decades, the solid-state lighting sources based on phosphor converted white lightemitting diodes (pc-WLEDs) has improved to overtake fluorescent lighting types because of many advantages such as high ecofriendliness, brightness, low power consumption and fast response time [2]. Here we report preparation and spectroscopic properties of the single phase new highly luminescent white emitting of the Tb³⁺/Eu³⁺/Dy³⁺ triply-doped CaWO₄ material. The CaWO₄:xTb³⁺,xEu³⁺,xDy³⁺(x mol% of the Ca²⁺ amount) materials were prepared by fast coprecipitation method at room temperature with stoichiometry aqueous solutions of Na₂WO₄, CaCl₂ and RECl₃ (RE³⁺: Tb, Eu and Dy). The XPD measurements revealed the CaWO₄:RE³⁺ particles belong to the tetragonal scheelite phase with I4₁/a (#88) space group.

The emission spectra exhibit only narrow emission bands arising from the doping Tb³⁺, Dy³⁺ and Eu³⁺ ions. These emission bands are assigned to the 4f transitions from the ${}^{4}F_{9/2}$ (Dy³⁺), ${}^{5}D_4$ (Tb³⁺) and ${}^{5}D_0$ (Eu³⁺) emitting states to their energy levels corresponding to (in nm): 702 ${}^{5}D_{0} \rightarrow {}^{7}F_4$ (Eu³⁺), 655 ${}^{5}D_0 \rightarrow {}^{7}F_3$ (Eu³⁺), 615 ${}^{5}D_0 \rightarrow {}^{7}F_2$ (Eu³⁺), 592 ${}^{5}D_0 \rightarrow {}^{7}F_1$ (Eu³⁺), 575 ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (Dy³⁺), 544 ${}^{5}D_4 \rightarrow {}^{7}F_6$ (Tb³⁺), 478 ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ (Dy³⁺) (Fig. left). The presence of the emission bands assigned to the doping Dy³⁺, Tb³⁺ and Eu³⁺ ions suggests clear evidence of non-radiative energy transfer from ${}^{4}F_{9/2}$ (Dy³⁺) $\rightarrow {}^{5}D_4$ (Tb³⁺) $\rightarrow {}^{5}D_0$ (Eu³⁺) emitter states (Fig. center). The white light emission was mainly reached for 5.0 mol% RE³⁺ with x: 0.333; y: 0.352 CIE (*Commission Internationale l'Éclairage*) coordinates (Fig. right).

These phosphors could be suitable as triply-doped white light emitters with only single-phased for solid state lighting applications. Since warm white light is preferred for reading, while cold white light is preferred for public lighting the tunability of this single-phase emitting phosphor exhibit promising applications for solid-state lighting.

Fig. The emission spectra (left); partial energy level diagram exhibiting the transitions involved in the energy transfers (curve arrows), non-radiative decays (dashed arrows) $WO_{4^{2^{-}}} \rightarrow RE^{3^{+}}$, as well as their simultaneous emission (middle); CIE chromatic diagram showing the coordinates for the CaWO₄:xEu³⁺,xTb³⁺,xDy³⁺; x: 0.5 – 5.0 mol%) materials under excitation at 378 nm.

References

- 1. H.P. Barbosa, J. Kai, I.G.N. Silva, L.C.V. Rodrigues, M.C.F.C. Felinto, J. Hölsä, O.L. Malta, H.F. Brito, J. Lumin. 170 (2016) 736–742.
- 2. J. Hye Oh, S. Ji Yang, Y. Rag Do, Light Sci. Appl. 3 (2014) e141.