

August 30th to 11 10 40C

August 30th to 1UMRS September 03rd 1UMRS

Structural and magnetic properties of CeO2 nanomaterials as a function of different morphologies: nanocube, nanowire and nanobelt.

Juliana Pires de Souza¹, <u>Jilder Dandy Peña Serna²</u>, Leticia Poras Reis de Moraes³, Júlio César Martins Silva¹, Odivaldo Cambraia Alves¹

¹Universidade Federal Fluminense (*Físico-Química*) , ²Centro Brasileiro de Pesquisas Físicas (*COMAN*) , ³Instituto de Pesquisas Energéticas e Nucleares

e-mail: julianapires@id.uff.br

The nanomaterials of cerium oxide can be applied in catalysts, fuel cells and spintronics [1]. Additionally, in its crystalline structure, small defects named oxygen gaps appear, caused by its high potential pattern of reduction from Ce IV to Ce III or that it becomes an oxidizing agent and the conferring agent. In this work we investigated the magnetic properties of three ceria morphologies on a nanometric scale: nanocubes, nanowires and nanobelt that were synthesized using the hydrothermal method. As samples prepared from studies by using X-ray diffraction (XRD), transmission electron microscopy (TEM), magnetometry (VSM) and paramagnetic resonance (EPR). XRD measurements show characteristic peaks of ceria fluorite face-centered cubic structure. Measurements of magnetization in function of the field applied at room temperature showing the ferromagnetic character with different values of the coercive field and saturation magnetization, we observe an increase in the coercive field and saturation magnetization in ceria nanocubes that can be explained by an increase in the density of vacancy [2]. The zero field cooled (ZFC) and field cooled (FC) magnetization curves measured on low magnetic fields show a soft maximum around 60 K attributed to oxygen at the sample surface. Applying to the Curie-Weiss equation indicates the presence of antiferromagnetic interactions mainly in nanobelt and nanocubes morphologies. The EPR spectra at room temperature show two paramagnetic symmetry, with axial symmetry with $g_1 = 1.97$ and $g_2 = 1.94$ associated with Ce³⁺ and another isotropic around g = 2.03 due to vacancies of isolated oxygen for all samples. The ferromagnetic arrangement characterized by the presence of broad signals at about 3500 G is also observed in nanobelt morphologies.

References

[1] K. Ackland, Karl, J. M. D. Coey, Physics Reports 746, (2018),1-39. [2] S. Kumar et al. AJP Advances, 5(2), (2015), 027109.

Acknowledgments

CNPQ (Proc. n.o 422614/2018-1), FAPERJ (Proc. E-26/211371/2019), CAPES and CBPF.