Paulo Sergio Cardoso Da Silva Guilherme Soares Zahn Francisco De Assis Souza organizadores

CONTRIBUIÇÕES DO REATOR IEA-R1 PARA A PESQUISA NUCLEAR

WARP2: II Workshop Anual do Reator de Pesquisas

Blucher Open Access

CONTRIBUIÇÕES DO REATOR IEA-R1 PARA A PESQUISA NUCLEAR Conselho editorial André Costa e Silva Cecilia Consolo Dijon de Moraes Jarbas Vargas Nascimento Luis Barbosa Cortez Marco Aurélio Cremasco Rogerio Lerner

Blucher Open Access

PAULO SERGIO CARDOSO DA SILVA GUILHERME SOARES ZAHN FRANCISCO DE ASSIS SOUZA (organizadores)

CONTRIBUIÇÕES DO REATOR IEA-R1 PARA A PESQUISA NUCLEAR WARP2: II Workshop Anual do Reator de Pesquisas

21 e 22 de novembro de 2019 Centro do Reator de Pesquisas Instituto de Pesquisas Energéticas e Nucleares Contribuições do Reator IEA-R1 para a Pesquisa Nuclear WARP2: II Workshop Anual do Reator de Pesquisas © 2022 Paulo Sergio Cardoso da Silva, Guilherme Soares Zahn e Francisco de Assis Souza Editora Edgard Blücher Ltda.

Publisher Edgard Blücher Editor Eduardo Blücher Coordenação editorial Jonatas Eliakim Produção editorial Thaís Costa Diagramação Taís do Lago Capa Laércio Flenic

Blucher

Rua Pedroso Alvarenga, 1245, 4° andar 04531-934 – São Paulo – SP – Brasil Tel 55 11 3078-5366 contato@blucher.com.br www.blucher.com.br

Segundo Novo Acordo Ortográfico, conforme 5. ed. do *Vocabulário Ortográfico da Língua Portuguesa*, Academia Brasileira de Letras, março de 2009.

É proibida a reprodução total ou parcial por quaisquer meios, sem autorização escrita da Editora.

Dados Internacionais de Catalogação na Publicação (CIP) Angélica Ilacqua CRB-8/7057

Workshop anual do reator de pesquisas (2.: 2019 : São Paulo) Contribuições do reator IEA-R1 para a pesquisa nuclear WARP 2 / organizado por Paulo Sergio Cardoso da Silva, Guilherme Soares Zahn, Francisco de Assis Souza. -- São Paulo : Blucher, 2022. 478 p : il. 21 e 22 de novembro de 2019 - Centro do Reator de Pesquisas Instituto de Pesquisas Energéticas e Nucleares Bibliografia

ISBN 978-65-5550-147-6 (impresso) ISBN 978-65-5550-148-3 (eletrônico)

1. Pesquisa nuclear 2. Física nuclear I. Título II. Silva, Paulo Sergio Cardoso da III. Zahn, Guilherme Soares IV. Souza, Francisco de Assis IV. IPEN

21-5617

CDD 539.7

Todos os direitos reservados pela Editora Edgard Blücher Ltda. Índices para catálogo sistemático: 1. Pesquisa nuclear *COMITÊ ORGANIZADOR* Paulo Sergio Cardoso da Silva Guilherme Soares Zahn Francisco de Assis Souza

COMITÊ CIENTÍFICO Paulo Sergio Cardoso da Silva Guilherme Soares Zahn Francisco de Assis Souza Frederico Antônio Genezini

APOIO

O Comitê Organizador agradece o apoio do Instituto de Pesquisas Energéticas e Nucleares (IPEN), do Departamento de Ensino do IPEN e da Marinha do Brasil, para a realização do II Workshop Anual do Reator de Pesquisas.

CAPÍTULO 40

DETERMINAÇÃO DE SM POR ANÁLISE POR ATIVAÇÃO NEUTRÔNICA EM AMOSTRAS GEOLÓGICAS: DE ARRISCADA A TRABALHOSA

Iberê S. Ribeiro Jr., Frederico A. Genezini e Guilherme S. Zahn

Centro do Reator de Pesquisas – IPEN-CNEN/SP Av. Professor Lineu Prestes, 2242 05508-000 São Paulo – SP ibereviolao@hotmail.com

RESUMO

Nesse trabalho foi desenvolvido um método alternativo para determinação do fator de interferência do ¹⁵³Sm como uma função do tempo de decaimento em virtude de interferência espectral de raios-X do ²³⁹Pu. Para realizar esse estudo foram irradiados dezoito padrões sintéticos de Sm e U no reator IEA-R1. Os fatores de interferência foram determinados experimentalmente para diferentes tempos de decaimento afim de ajustar uma função/curva teórica para os dados experimentais. Ao final será introduzido uma nova possibilidade de determinação do fator de interferência para o ¹⁵³Sm utilizando medidas em coincidência gama-gama que apresenta a possibilidade de eliminar as interferências dos raios-X do ²³⁹Pu.

1. INTRODUÇÃO

A Análise por ativação Neutrônica (NAA) é uma técnica analítica empregada na determinação de diversos elementos em diferentes tipos de matrizes e constitui uma das mais importantes aplicações do reator nuclear IEA-R1. No entanto, em amostras de origem geológica, que geralmente possuem U em sua composição, a determinação de alguns elementos pode ser afetada quando o radioisótopo utilizado nas análises é também formado pelo pela fissão do ²³⁵U. A magnitude dessa interferência depende da razão de fluxo de nêutrons epitérmicos e térmicos, que é um parâmetro que característico de cada reator (e que também sofre variações função da posição de irradiação).

A determinação do Sm por NAA é realizada utilizando o radioisótopo ¹⁵³Sm que também é um produto de fissão do ²³⁵U, e, portanto, deve ser determinado um fator de interferência para esse elemento para obtenção de melhores resultados analíticos.

A determinação do Sm torna-se um caso mais complexo, porque o radioisótopo ¹⁵³Sm também sofre interferência de raios-X do ²³⁹Pu, produzido pela captura neutrônica do ²³⁸U. Além do mais, essa interferência de raios-X varia com o tempo de decaimento, pois as meias-vidas envolvidas na produção e decaimento do ²³⁹Pu é diferente da meia-vida do ¹⁵³Sm.

A determinação de fatores de interferência para o ¹⁵³Sm tem sido amplamente estudada na literatura [1-5], no entanto não foi encontrado nenhum estudo que considere a interferência dos raios-X do ²³⁹Pu.

Nesse trabalho será apresentado um método alternativo para a determinação de um *fator de interferência dependente do tempo* de decaimento que considera a interferência dos raios-X do ²³⁹Pu para ser aplicado na determinação de Sm por NAA em amostras com altos teores de U.

1.1 Fator de Interferência de Produtos de Fissão do U

O fator de interferência de produtos de fissão do U (F) é definido como a razão entre a atividade específica do radionuclídeo formado pela fissão do ²³⁵U e a atividade específica do radionuclídeo utilizado na NAA:

$$F_{X} = \frac{A_{U}^{X}/m_{U}}{A_{X}/m_{X}}$$
(1)

Onde, $m_x e m_u$ são as massas do elemento de interesse e do U, respectivamente; $A_u^x e A_x$ são as atividades induzidas pela fissão do U e pela reação n, γ do elelemento que será determinado.

O fator de interferência determinado por meio da Equação 1 é denominado na literatura como "fator de interferência experimental" [6-7], e pode ser obtido preparando padrões de U e do elemento de interesse com massas conhecidas, irradiando junto estes padrões e utilizando um sistema de aquisição apropriado para a medida de atividade induzida nestes padrões.

As atividade induzidas $A_U^X e A_X$ (na Equação 1) podem ser calculadas usando valores experimentais dos fluxos de nêutrons térmicos e epitérmicos ($\phi_{te} e \phi_{ep}$, respectivamente), utilizando as Equações 2 e 3:

$$A_{U}^{X} = \frac{m_{U} \cdot a_{235U} \cdot N_{A} \cdot f_{X} \cdot I' \cdot \varepsilon}{M_{U}} \cdot \left(\sigma_{th}^{U235(n \cdot f)} \cdot \phi_{th} + \sigma_{ep}^{U235(n \cdot f)} \cdot \phi_{ep}\right) \cdot \left(1 - e^{-\lambda X \cdot ti}\right) (2)$$

$$A_{X} = \frac{m_{X} \cdot a_{X} \cdot N_{A} \cdot f_{X} \cdot I^{\gamma} \cdot \varepsilon}{M_{X}} \cdot \left(\sigma_{th}^{X(n,\gamma)} \cdot \phi_{th} + \sigma_{ep}^{X(n,\gamma)} \cdot \phi_{ep}\right) \cdot \left(1 - e^{-\lambda X \cdot ti}\right)$$
(3)

Onde os índices X e U referem-se ao elemento de interesse e U, respectivamente; $M \notin o$ peso atômico; $a \notin a$ abundância isotópica; $N_A \notin a$ constante de Avogadro; $f \notin o$ rendimento de fissão cumulativo; $I' \notin a$ intensidade da transição gama; $\epsilon \notin a$ eficiência de detecção; $\sigma_{th}^{U235(n,f)} \in \sigma_{ep}^{U235(n,f)}$ são as seções de choque térmica e epitérmica, respectivamente; $\lambda \notin a$ constante de decaimento do radioisótopo; $\sigma_{te}^{X(n,\gamma)}$ $e \sigma_{ep}^{X(n,\gamma)}$ são as seções de choque para captura de nêutrons térmicos e epitérmicos, respectivamente e $t_i \notin o$ tempo de irradiação.

A determinação do fator de interferência pode ser realizada *teoricamente* substituindo as Equações 2 e 3 na Equação 1, obtendo-se a seguinte expressão:

$$F = \frac{M_X \cdot a_{235U} \cdot f_X \cdot \left[\sigma_{th}^{U235(n,f)} + \left(\phi_{ep} / \phi_{th} \right) \cdot \sigma_{ep}^{U235(n,f)} \right]}{M_U \cdot a_X \cdot \left[\sigma_{th}^{X(n,\gamma)} + \left(\phi_{ep} / \phi_{th} \right) \cdot \sigma_{ep}^{X(n,\gamma)} \right]}$$
(4)

1.2 Fator de Interferência para o ¹⁵³Sm.

A determinação da presença de Sm por NAA normalmente é realizada utilizando a transição gama de 103 keV do radioisótopo ¹⁵³Sm ($t_{1/2} = 46,75h$) que é formado pela reação n, γ do isótopo ¹⁵²Sm. No entanto, esse radioisótopo também é formado pela fissão do ²³⁵U. A determinação de um fator de interferência para o Sm torna-se mais complexa, pois a transição gama de 103 keV também sofre

interferência espectral de raios-X de 103 keV emitido pela conversão interna da camada $K_{\alpha l}$ do ²³⁹Pu, que é produzido na irradiação do U, conforme mostrado na Figura 1.

Figura 1 – Produção de ²³⁹Pu durante a irradiação do U por um fluxo de nêutrons.

Devido à essa interferência adicional de raios-X do ²³⁹Pu a Equação 1 precisa ser reescrita para o Sm da seguinte maneira:

$$F_{153Sm} = \frac{A_U^{153Sm} + A_{239Np}^{XRay}}{A_{153Sm}} \cdot \frac{m_{Sm}}{m_U} = \frac{A_{103keV}^{total}}{A_{153Sm}} \cdot \frac{m_{Sm}}{m_U}$$
(5)

Como a meia-vida do ²³⁹Np é maior do que a meia-vida do ¹⁵³Sm o fator de interferência para o ¹⁵³Sm aumenta com o tempo de decaimento. Considerando as interferências devido a formação de ¹⁵³Sm pela fissão do U e os raios-X do ²³⁹Pu pode ser determinado *um fator de interferência teórico efetivo* como uma função do tempo de decaimento utilizando a Equação 6:

$$F_{153Sm}(t_d) = \frac{M_{Sm} \cdot a_{235U} \cdot f_{153Sm}}{M_U \cdot a_{152Sm}} \cdot \frac{k_{235U}^f}{k_{152Sm}^{(n,\gamma)}} + \frac{I^{XRay} \cdot \lambda_{239Np} \cdot M_{Sm}}{I^{\gamma} \cdot a_{152Sm}} \cdot \frac{N_0^{239Np} \cdot e^{-td \cdot (\lambda 239Np - \lambda 153Sm)}}{k_{152Sm}^{(n,\gamma)}}$$

$$(6)$$

Onde para simplificação alguns termos relacionados com a fissão do ²³⁵U e a ativação do ¹⁵²Sm foram agrupados:

$$\begin{aligned} k_{235U}^{f} &= \sigma_{th}^{U235(n,f)} \cdot \phi_{th} + \sigma_{ep}^{U235(n,f)} \cdot \phi_{ep}; \\ k_{152Sm}^{(n,\gamma)} &= \sigma_{th}^{152Sm(n,\gamma)} \cdot \phi_{th} + \sigma_{ep}^{152m(n,\gamma)} \cdot \phi_{ep}; \end{aligned}$$

Onde t_d é o tempo de decaimento; I^{x-ray} é a intensidade absoluta do raio-X emitido pelo ²³⁹Pu e N_0^{239Np} é o número de átomos de ²³⁹Np formados após a irradiação. O parâmetro N_0^{239Np} é uma função do tempo de irradiação e pode ser calculado pela Equação 7.

$$N_{0}^{239Np}(t_{i}) = \frac{M_{U} \cdot a_{238U} \cdot N_{A}}{M_{U} \cdot \lambda_{239Np} \cdot (\lambda_{239Np} - \lambda_{239U})} \cdot k_{238U}^{(n,p)} \cdot \left[\lambda_{239Np} \cdot (\lambda_{239Np} - \lambda_{239U}) \cdot (1 - e^{-\lambda 239V}) \cdot (1 - e^{-\lambda 239V}) \right]$$

$$(7)$$

Onde:

 $k_{238U}^{(n,\gamma)} = \sigma_{th}^{238U(n,\gamma)} \cdot \phi_{th} + \sigma_{ep}^{238U(n,\gamma)} \cdot \phi_{ep}$

Utilizando os parâmetros nucleares presentes na Tabela 1 e conhecendo-se a razão entre fluxo de nêutron epitérmicos e térmicos é possível determinar um fator de *interferência teórico efetivo* (que considera também a interferência de raios-X do ²³⁹Pu) dependente do tempo por meio da Equação 6.

Tabela 1 - Parâmetros nucleares utilizados no cálculo do fator de interferência do Sm

Reação nuclear	Abundância Isotópica [8]	Massa Atômica	Seção de choque para captura de nêutrons térmicos (bar) [9]	Seção de choque para captura de nêutrons epitérmicos (bar) [9]	Rendimento de fissão cumulativo [10]	Meia-Vida [11]
$^{152}Sm(n,\gamma)^{153}Sm$	0,267	150,36	206 (6)	2970 (100)	0,001477	1,92855(5)
²³⁹ Np(n,γ) ²⁴⁰ Np	-	-	68 (10)*	455*	-	2,356 (3)
²³⁸ U(n, γ) ²³⁹ U	0,992745	238,029	2,680 (19)	277 (3)	-	0,01629(3)
²³⁵ U(n,f)	0,0072	238,029	582	275	-	

2. PARTE EXPERIMENTAL

2.1. Preparação de Padrões Sintéticos

Padrões sintéticos oriundos da empresa Spex Certiprep foram diluídos em água purificada, em seguida, foram pipetados 50 μ L dessas soluções em papel filtro Whatman N° 40, que foram posteriormente secados em temperatura ambiente em um dissecador por um período de 24 h. As massas de Sm e U foram (em nano gramas) de 10010 ± 20 e 10030 ± 203.

2.2. Preparação dos Monitores de Fluxo

Foi utilizada a técnica da razão de Cádmio para determinação do fluxo de nêutrons epitérmicos e térmicos. Irradiou-se uma liga de Al-Au certificada (IRMM-530R) com 0,1% de Au. Essas ligas tinham massas de aproximadamente 3,5 mg e foram previamente higienizadas utilizando álcool isopropílico.

2.3. Irradiações

Foram realizadas um total de dezoito irradiações dos padrões de Sm e U para a determinação dos fatores experimentais por um período de oito horas na posição 14b prateleira 3 do reator IEA-R1. Os padrões sintéticos foram irradiados dentro de um mesmo dispositivo de irradiação e as medidas se iniciaram com aproximadamente quatro dias de decaimento após a irradiação.

Foram realizadas oito irradiações dos monitores de fluxo por um período de quatro horas mantendo-se a mesma posição de irradiação dos padrões sintéticos.

2.4. Medição das Atividades

A espectroscopia gama dos padrões sintéticos foi realizada utilizando um detector de germânio hiperpuro (HPGe) acoplados à um processador digital de espectro DSA1000, ambos da Canberra. Os valores de incertezas e taxas de contagens (cps) utilizados nas determinações dos fatores de interferência foram fornecidos pelo software Gennie 2000 versão 3.1.

3. RESULTADOS E DISCUSSÃO

Os valores obtidos para o fator de interferência experimental sofreram variação de $0,0384\pm0,003$ (com três dias de decaimento) até $0,123\pm0,003$ (para vinte dias de tempo de decaimento), esse fato mostra a magnitude da interferência dos raios-X do ²³⁹Pu.

Foram obtidos os valores de $(5,37\pm0,39) \ge 10^{12} \text{ cm}^{-2}\text{s}^{-1}$ para o fluxo de nêutrons térmicos e $(6,93\pm0,58) \ge 10^{10} \text{ cm}^{-2}\text{s}^{-1}$ para nêutrons epitérmicos. Com esses valores foi calculado o fator de *interferência efetivo dependente do tempo de decaimento* utilizando a Equação 6.

Na Figura 2 são apresentados os *fatores de interferência experimentais* determinados para diferentes tempos de decaimento (pontos) e a curva dos valores calculados teoricamente utilizando a Equação 6.

Os resultados apresentados na Figura 2 indicam que os valores obtidos pelas duas metodologias apresentam concordância entre si considerando os erros envolvidos nas medidas. A faixa de incerteza obtida para o fator de *interferência teórico efetivo* foi maior do que as incertezas dos fatores determinados experimentalmente em virtude do número de variáveis utilizados nos cálculos e também em virtude dos elevados valores de desvio padrão relativo obtidos para os fluxos de nêutrons epitérmicos e térmicos.

É importante ressaltar que o fator de interferência teórico obtido com a Equação 4 (método tradicional) não considera a interferência de raios-X do ²³⁹Pu, e portanto, não sofre variação com o tempo de decaimento e o valor obtido por essa metodologia foi de $(6,03 \pm 0,66) \times 10^{-5}$, enquanto o valor obtido experimentalmente para três dias decaimento foi de $0,0384\pm0,003$, ou seja, o fator de interferência experimental para esse tempo de decaimento é aproximadamente seiscentas vezes maior do que o calculado teoricamente pelo método tradicional, mostrando que a maior parte da interferência é proveniente dos raios-X do ²³⁹Pu.

3.1. Perspectivas de Trabalhos Futuros

Durante o período de 2014 até 2018 foi desenvolvido no laboratório de Física Nuclear Aplicada localizado no prédio do reator IEA-R1 um sistema de aquisição em coincidência gama-gama digital composto por dois detectores HPGe e um digitalizador v1724 da marca CAEN. Medidas em coincidência gama-gama apresentam a capacidade de eliminar o problema de interferência dos raios-X do ²³⁹Pu porque são apenas registrados eventos que cheguem em ambos os detectores em um intervalo de tempo muito curto.

O ¹⁵³Sm apresenta um decaimento em cascata gama cujas energias envolvidas são de 69 e 103 keV e probabilidade de 1,44%, apesar da baixa probabilidade foi possível detectar essa cascata em medidas preliminares com o sistema desenvolvido. Essas medidas preliminares apontam para a possibilidade de determinação de um fator de interferência experimental para o ¹⁵³Sm sem interferência dos raios-X do ²³⁹Pu utilizando espectroscopia em coincidência gama-gama.

4. CONCLUSÕES

Verificou-se nesse trabalho que o fator de interferência para o ¹⁵³Sm aumenta com o tempo de decaimento devido aos raios-X do ²³⁹Pu, portanto o fator de interferência teórico obtido pela Equação 4 não pode ser aplicado no caso do ¹⁵³Sm. Além do mais, a interferência oriunda dos raios-X do ²³⁹Pu é maior do que interferência produzida pelo ¹⁵³Sm formado pela fissão do U, portanto, um *fator de interferência efetivo* para o ¹⁵³Sm deve considerar essa questão.

O *fator de interferência teórico dependente do tempo de decaimento* proposto nesse estudo forneceu valores similares aqueles obtidos pelas medidas experimentais, indicando que essa metodologia (utilizando a Equação 6) pode ser aplicada para determinação de um fator de *interferência efetivo* e correção na concentração de Sm por NAA em amostras com altos teores de U.

As medidas preliminares em coincidência gama-gama encorajam um estudo mais detalhado para eliminação de interferência dos raios-X do ²³⁹Pu na determinação de um fator de interferência para o ¹⁵³Sm.

REFERÊNCIAS

1. LANDSBERGER, S. Spectral interference from uranium fission in neutron activation analysis. *Chemical Geology*, v. 57, p. 415-421, 1986.

2. LANDSBERGER, S.; SIMSONS, A. Quantification of uranium, thorium and gadolinium spectral interferences in instrumental neutron activation analysis of samarium. *Chemical Geology*, v. 62, p. 223-226, 1987.

3. AL-JOBORI, I.S. M.; AL-ATIA, M. J.; HUSSIEN, A.K. INAA of Zr, La, Ce and Nd in geological samples in the presence of different uranium concentrations. *Journal of Radioanalytical and Nuclear Chemistry*, v. 139, p. 31-36, 1990.

4. TSHIASHALA, M. D. Instrumental neutron activation analysis in geochemistry: emphasis on spectral and uranium fission products interferences. *Journal of Radioanalytical and Nuclear Chemistry*, v. 265, p. 511-514, 2005.

5. PARK, K. S. *et al.* Interference in neutron activation analysis of rocks by uranium fission. *Journal of Radioanalytical and Nuclear Chemistry*, v. 168, p. 153-161, 1993.

6. LASCOCK, M. D. *et al.* Correcting for uranium fission in instrumental neutron activation analysis of high-uranium rocks. *Journal of Radioanalytical and Nuclear Chemistry*, v. 99, p. 121-131, 1986.

7. AL-JOBORI, S. M.; AL-ATIA, M. J.; HUSSIEN, A. K. INAA of Zr, La, Ce and Nd in geological samples in the presence of different uranium concentrations. *Journal of Radioanalytical and Nuclear Chemistry*, v. 139, p. 31-36, 1990.

8. FIRESTONE, R. B. Table of isotopes. New York: Wiley-Interscience, 1996.

9. MUGHABGHAB, S. F. *Thermal neutron capture cross sections resonance integrals and g-factors*. Upton, New York: International Nuclear Data Committee, 2003.

10. INTERNATIONAL ATOMIC ENERGY AGENCY. International Nuclear Data Committee. Fission yields data table. Cumulative fission yields. *In: Handbook of nuclear data for safeguards: database extensions, August 2008.* 124 p. Disponível em: http://www-nds.iaea.org/sgnucdat/c3.htm. Acesso em: 8 nov. 2019.

11. LABORATOIRE NATIONAL HENRI BECQUEREL. Recommended data. Disponível em: https://www.nndc.bnl.gov/nudat3/chartNuc.jsp . Acesso em: 8 nov. 2019.