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Abstract
Seed priming is a potential tool for improving productivity under different environmental conditions. Aminolevulinic acid 
(ALA) priming can enhance plant tolerance to abiotic stresses, such as salinity, drought, and extreme temperatures. Nano-
priming, priming with nanoparticles, can increase seed germination, growth, and plant development. The goal of this work 
was to compare the germination, growth, and development of sunflower seeds primed at 25 °C for 24 h with five treatments: 
water, ALA, silver, copper, and copper-silver nanoparticles (ALANPs) using a two-way analysis of variance. ALANPs were 
prepared by the photoreduction process (ALA as stabilizing/capping agent) and characterized by UV–Vis, transmission 
electron microscopy, FTIR, and Zeta potential. The germination percentage, shoot length, root length, seedling vigor index 
(Vi), and allometric coefficient were obtained on the 3rd, 6th, and 10th days after the priming process. The fluorescence 
spectra of chlorophyll extract of the whole seedling or directly in the cotyledons were measured. According to the results, 
seed priming with ALANPs enhanced sunflower seed germination capacity, seed growth, and increased chlorophyll produc-
tion compared to water and ALA-primed seeds.
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Abbreviations
ALA	� Aminolevulinic acid
ALANPs	� Aminolevulinic acid-based nanoparticles
FTIR	� Fourier-transform infrared
GP	� Germination percentage
RL	� Root length
SL	� Shoot length
Vi	� Vigor Index
AC	� Allometric coefficient

PpIX	� Protoporphyrin IX
ROS	� Reactive oxygen species
PEG	� Polyethylene glycol
ALAAgNPs	� ALA:silver nanoparticles
ALACuNPs	� ALA:copper nanoparticles
ALAAgCuNPs	� Bimetallic ALA:silver-copper 

nanoparticles
PDI	� Polydispersity index
TEM	� Transmission electron microscopy
SPR	� Surface plasmon resonance

Introduction

Sunflower (Helianthus annuus L.) is the world’s fourth larg-
est oil-producing crop after soybeans, rapeseed, and saf-
flower (Adeleke and Babalola 2020; Bonciu et al. 2020). 
Furthermore, it is used as a raw material for biodiesel pro-
duction (Tutunea et al. 2018). Sunflower seeds are dormant 
and germinate poorly, particularly at relatively low tempera-
tures or temperatures > 45 °C, and under salt stress (Gay 
et al. 1991). This problem has been reported by many stud-
ies and is a bottleneck for the productivity of sunflowers 
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(El-Nwehy et al. 2018; Melnyk et al. 2020; Zhuykov et al. 
2020; Sadiq et al. 2021; Sher et al. 2021). Studies also 
showed that seed priming could lighten these adverse effects 
(Akram et al. 2011; Catiempo et al. 2021; Silva et al. 2022).

Seed priming is a pre-sowing treatment in which seeds 
are immersed in a specific solution for a determined period 
(Marthandan et al. 2020). This process can boost the per-
formance of crops in fragile ecosystems (Paparella et al. 
2015). Hydropriming, hormonal priming, osmopriming, 
and biopriming are some of the priming methods that are 
used in these ecosystems (Nile et al. 2022). An innovative 
seed-priming method uses nanoparticles (NPs) as a priming 
agent. This method is known as nanopriming (Khalaki et al. 
2021). The use of seed nanopriming in agriculture improves 
the quality of seeds and increases resistance against abiotic 
(heat or cold, drought or flood, salinity) and biotic stresses 
(microorganisms, insects, or weeds) (Mahakham et al. 2017; 
Santo Pereira et al. 2021). Nanopriming induces the forma-
tion of nanopores in the seed coat, which increases water 
uptake and activates reactive oxygen species (ROS), essen-
tial to breaking seed dormancy and promoting germination 
(Rai-Kalal et al. 2021; Silva et al. 2022).

Tan et al. reported that aminolevulinic acid (ALA) prim-
ing can activate nitric oxide, hydrogen peroxide, antioxidant 
capacity, osmoregulation, and nitrogen assimilation (Tan 
et al. 2022). ALA, a non-protein endogenous amino acid, 
is the first compound in the protoporphyrin IX (PpIX) syn-
thesis pathway, which leads to heme synthesis in mammals 
and chlorophyll in plants. ALA is a crucial growth regulator 
in higher plants, and it has been proven to be effective in 
improving photosynthesis and alleviating the adverse effects 
of various abiotic stresses in higher plants (Wu et al. 2019; 
El-Shora et al. 2021).

In 1984 Rebeiz et al. reported that ALA could be used 
as an herbicide and insecticide (Rebeiz et al. 1984). The 
exogenous application of ALA in yeasts, insects, and plants 
induces a high accumulation of PpIX. PpIX is a generator 
of reactive oxygen species (ROS) when excited by light, in 
an appropriate wavelength, and in the presence of oxygen. 
ROS promotes cellular toxicity effects through apoptosis, 
necrosis, and autophagy. Under the action of PDT (photody-
namic therapy) with sunlight, it is possible to perform pest 
control (Amindari et al. 1995). Studies focusing on alter-
native microbial production of ALA from renewable and 
inexpensive sources to increase production are underway, 
which justifies ALA use in agriculture (Zhang et al. 2015; 
Cui et al. 2019).

Aminolevulinic acid has been used to synthesize metal-
lic nanoparticles by the photoreduction process (ALANPs) 
(Goncalves et al. 2015, 2018). In this process, the light is the 
reducing agent, and ALA acts as stabilizing/capping mol-
ecule since ALA structure has both a carboxylic acid group 
and an amino group, which are anchoring groups and aid 

in increasing binding strength and hence colloidal particle 
stability (Heuer-Jungemann et al. 2019). ALANPs are stable 
and potentialize the photodynamic activity of ALA (Gon-
calves et al. 2018, 2020; da Silva et al. 2021).

Silver and copper are the most studied metals for nano-
particle synthesis. Silver nanoparticles (AgNPs) have unique 
properties that protect seeds from bacteria and fungi and are 
potentially valuable for agricultural activities (Mishra and 
Singh 2015; Sahayaraj et al. 2015). AgNPs can stimulate 
seed germination by developing nanopores on the seed coat, 
activating reactive oxygen species (ROS), and promoting 
oxidative stress that is favorable for germination (Ethiraj and 
Kang 2012) Nile et al. 2022). Copper (Cu) is essential for 
plant growth (Gomes et al. 2021; Farooq et al. 2022). Seed 
priming with CuNPs positively impacts the initial develop-
ment of seedlings (Gomes et al. 2021; Sarkar et al. 2021).

Therefore, this study was initiated with the objectives to 
evaluate a combination of nanoparticle type, size, compo-
sition, concentration, and chlorophyll content variation on 
sunflower seed germination after treatment with ALA nano-
particles synthesized by photoreduction process.

Materials and Methods

Silver, Copper, and Silver‑Copper nanoparticles 
with 5‑ALA synthesis

This study was conducted in the Applied Optical Biomedi-
cal Laboratory of the Department of Physics in the Federal 
University of São Paulo.

Silver nitrate, 5-Aminolevulinic acid hydrochloride ~98% 
(A3785), and Polyethylene glycol 10,000 (PEG) were pur-
chased from Sigma-Aldrich. Cupric chloride dihydrate 
(99%) was purchased from Êxodo Científica (Brazil).

For ALAAgNPs synthesis, 1 mM of AgNO3 (Sigma) was 
mixed with 6 mM of ALA (5-Aminolevulinic acid hydro-
chloride from Sigma) and 1 mol of Polyethylene Glycol 
(PEG) in distilled water at 20 °C. Then mixed and stirred 
vigorously. The solution was exposed to a 300 Watt Cermax 
Xenon lamp for 1 min (3.6 W/cm2). After exposing for the 
irradiation, the solution was adjusted to pH 7.0 to improve 
stability for the suspension.

For the preparation of ALACuNPs, 6 mM of 5-ALA, 
1 mM of CuCl2, and 1 M of PEG were diluted in distilled 
water and mixed thoroughly. Then, the solution was illu-
minated for 8 min. After the irradiation, the solution was 
adjusted to pH 7.0.

ALAAgCuNPs were synthesized by mixing 6 mM of 
5-ALA, 1 mM of AgNO3, 1 mM of CuCl2, and 1 mol of 
PEG in distilled water. The solution was illuminated for 
5 min. After the brief irradiation, the solution was adjusted 
to pH 7.0.
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Nanoparticles Characterization

The ultraviolet–visible (UV–Vis) absorption spectra was 
measured by a Shimadzu spectrophotometer using 10 mm 
quartz cells. The shape and sizes of ALANPs were deter-
mined with a transmission electron microscope (TEM) 
Jeol (Zeiss, Germany). The effective surface charges on 
the ALANPs were measured using Zeta potential (Malvern 
Instruments Zetasizer, Worcestershire, UK).

The Fourier-transform infrared spectroscopy (FTIR) 
spectra were obtained with a Shimadzu Prestige-21 spec-
trometer (Shimadzu Corp., Kyoto, JP) with a 2 cm−1 reso-
lution range of 4000 to 400 cm−1. The nanoparticles were 
dropped onto glass slides and left in the desiccator for 
24 h. The dried material was used to prepare a KBr pellet 
for analysis.

Preparation of Seeds

The striped sunflower seeds (Helianthus annuus L.) were 
purchased from Danreal Indústria e Comércio Ltda, at 
São Paulo, Brazil. A Randomly selected seeds (with peri-
carp) were primed for 24 h and temperature of 25 ± 4 °C 
in 10 mL of water and different dilutions of ALA and 
ALANPs, to compare the germination, growth and at the 
same time toxicity traces. Five groups were studied: (1) 
Control group (water), (2) Aminolevulinic acid (ALA) 
solution group (6 mM-100%, 3 mM-50%, 1.5 mM-25% 
and 0.75 mM-12.5%), (3) ALAAgNPs group, (4) ALA-
CuNPs group, and (5) ALAAgCuNPs group. For ALANPs 
groups, suspensions were studied without dilution (100%), 
and with distilled water dilutions of 50%, 25%, and 12.5%.

In Vitro Germination of Seeds

Primed seeds were collected 24 h after sowing and trans-
ferred to transparent plastic cups (diameter 7 cm) with lids 
lined with bond paper. The seeds (n = 102) were incubated 
at room temperature for 10 days in day/night conditions at 
25 ±4◦C . 1 mL of distilled water was added to the seeds 
every three days until the end of the experiment.

Measurement of Physiological Indices

Germination percentages (GP = Ni/N × 100, where N is 
the total number of seeds and Ni is the number of germi-
nated seeds), shoot length (SL), root length (RL), vigor 
index [Vi = (RL + SL) × GP], and allometric coefficient 
(AC = SL/RL) were calculated on the 3rd, 6th, and 10th 
days after germination of nanoprimed seeds. Means and 
standard deviations were obtained from measurements on 

three replicates for each treatment. Seeds were considered 
germinated after the emergence of radicles from the seed 
coat.

Chlorophyll Fluorescence

On the 10th day after nanopriming, the two most vigorous 
samples of the studied group (considering that the water 
group has only two germinated seeds) were added to a fal-
con tube containing 5 mL of acetone and centrifugated for 
15 min at 4000 rpm. The supernatant was measured in the 
fluorimeter Horiba Jobin Yvon-Fluorolog 3 with excitation 
at 434 nm, and the emission spectra were obtained between 
550 and 750 nm. The chlorophyll measured in the whole 
seedling includes chlorophyll content in cotyledons and 
hypocotyls.

Also, the chlorophyll fluorescence was measured directly 
over the cotyledons using a bifurcated fiber outsider fluor-
imeter under excitation at 430 nm.

Effect of Hydrogen Peroxide (H2O2) in Nanoparticles

For this study 100 μL of H2O2 solutions (1 mM, 0.54 mM, 
0.25 mM, 0.13 mM, 0.06 mM and 0.03 mM) were added in 
1 mL of ALAAg, ALACu and ALAAgCuNPs solutions and 
the absorption spectrum was measured in UV–Vis region.

Statistical Analysis

A two-way analysis of variance (TI 84 type graphing calcu-
lator) was used to perform statistical analysis (p value < 0.05 
was considered significant). Means and standard deviations 
were obtained from measurements on three replicates for the 
control and each treatment.

Results

Nanoparticles Characterization

UV–Vis and Zeta potential

The UV–Vis spectra of the synthesized nanoparticles are 
shown in Fig. 1. The surface plasmon resonance (SPR) of 
ALAAgNPs showed a peak centered near 437 nm at UV–Vis 
spectra (Fig. 1a), confirming the reduction of silver ions to 
colloidal silver. In Fig. 1b, the characteristic SPR spectra 
with absorbance at 620–710 nm can be attributed to the for-
mation of ALACuNPs. Figure 1c shows the combined SPR 
bands of ALAAgCuNPs.

Table 1 presents the Zeta potential and polydispersity 
index values obtained for ALANPs. All nanoparticles were 
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negatively charged, and the ALAAg nanoparticles were pre-
sented the higher zeta potential value.

Fourier‑Transform Infrared Spectroscopy (FTIR) Studies

The stability of colloidal suspension depends on the cap-
ping/ligand agents. ALA, in our case, serves as a capping 
agent. ALA presents amine (NH2) and carboxyl (–COOH) 

functional groups. These two groups make bonds with met-
als through electrostatic interactions. ALA and ALANPs 
FTIR spectra are shown in Fig. 2.

FTIR spectrum of ALA presents bands in the region 
4000–3000 cm–1 corresponding to the stretching vibrations 
of N–H and O–H. The band in the middle of the spectrum 
around 1720 cm−1 corresponds to the C=O stretch.

ALAAg exhibits peaks at 3436, 2882, 1727, 1342, 1278, 
1239, 1120, 957, and 839 cm−1. The band at 2882 cm−1 is 
related to the asymmetric stretching vibration of the C-H 
bond, and the band at 1343 cm−1 to the –O–H bending of 
carboxylates. The reduction of the intensity of C=O band 
from the carboxyl group (~ 1720 cm−1) suggests strong inter-
action of the nanoparticles with this functional group.

ALACu nanoparticles present distinct peaks at 1594 cm−1 
and 587 cm−1. The ALAAgCuNPs spectrum is very similar 
to the ALACuNPs spectrum. The peak at 587 cm−1 is related 
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Fig. 1   UV–Vis spectra obtained for a ALAAgNPs, b ALACuNPs and c ALAAgCuNPs

Table 1   Zeta potential and 
polydispersity values obtained 
for ALAAg, ALACu, and 
ALAAgCuNPs

Sample Zeta 
Potential 
(mV)

PDI

ALAAg − 37.9 0.319
ALACu − 24.4 0.361
ALAAgCu − 16.3 0.505

Fig. 2   FTIR spectra obtained 
for ALAAgNPs, ALACuNPs 
and ALAAgCuNPs
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to the Cu–O bond, confirming the formation of CuNPs 
(Ethiraj and Kang 2012). Carbonyl and hydroxyl groups are 
strongly attracted to copper oxide.

Transmission Electron Microscopy (TEM) Studies

The TEM images shown in Fig. 3 indicates that ALAAgNPs 
have sizes of around ~ 30 nm (Ag). ALACuNPs presented 
particles with sizes around 5 nm. ALAAgCuNPs consist of 
dispersed spherical nanoparticles with sizes of ~ 30 nm (Ag) 
and ~ 5 nm (Cu).

Seed Germination

Germination Rate, Root Length, Shoot Length, Vigor Index, 
and Allometric Coefficient

The seed germinates in three phases: Phase I Imbibition: 
seed hydration process; Phase II Activation: initiation of bio-
chemical processes. Phase III Growth: initiation of growing 
processes. Primed seeds were removed from the priming 
solution in Phase II before the roots emerged.

Germination began during the second and third days after 
priming. Except for the hydropriming group, the remaining 
groups had recorded a germination percentage of 100%.

The images obtained on the 6th and 10th days are shown 
in Fig. 4. On the 6th day, enrolled hypocotyls were observed 
for ALA (12.5%) and ALANPs-primed seeds. One seed 
primed with ALA (100%) seeds had atrophied hypocotyls 
and another chlorotic coloring. On the 10th day, hypocotyls 
were disenrolled, and lateral roots and the green cotyledons 
were observed for ALANPs-treated seeds. Hydropriming 
seeds showed thin hypocotyl.

Nanopriming improved the speed of germination and 
vigor index, as observed in Fig. 5a and Table 1S. Vigor index 
showed progressive increase during the successive days. 
ALANPS significantly (p < 0.05) outperformed hydroprim-
ing treatment in vigor index after the 6th day. However, ALA 

(100%) showed lower vigor index compared to hydroprimed 
seedling treatment after the 6th day.

Figure 5b shows AC values in all groups in the 3rd, 6th, 
and 10th days after priming. There was no statistical differ-
ence between the groups, however, a reduction in AC values 
observed for ALANPs compared to the water group sug-
gests that seed nanopriming positively impacts root growth 
as compared to shoot.

Chlorophyll Content

Figure 6a shows the excitation and emission spectra of chlo-
rophyll (10th day) obtained directly from the cotyledons 
(excitation at 434 nm) or the whole seedling (excitation at 
430 nm) primed with ALA. It is observed that the fluores-
cence in the cotyledons (684 nm) is red shifted compared 
to fluorescence obtained from chlorophyll extracted from 
the whole plant (669 nm). The excitation spectra obtained 
directly from cotyledons show the presence of bands Qx 
(one state of Q band) of chlorophyll a near 550 nm, and two 
overlapping Soret (B) bands are observed around 434 nm. 
The chlorophyll obtained from the whole plant is a composi-
tion between chlorophyll a and b.

Figure 6b compares the emission intensities of cotyle-
dons chlorophyll of which group (water, ALA, ALAAg, 
ALACu, and ALAAgCu) indicating that intensity is higher 
for ALA primed seeds, but ALANPs present emission inten-
sity higher than hydropriming seeds. A shift of chlorophyll 
maximum emission band from ~684 nm (ALA) to ~685 nm 
(ALACuNPs) was observed.

Figure 7 shows the fluorescence intensities of chlorophyll 
extract from the whole seedling in all the groups. The ALA 
and ALANPs primed seeds presented higher chlorophyll 
emission intensities than that obtained by water priming 
(green line) except for ALA (100%) and ALAAgCu (100%). 
A redshift in the maximum wavelength emission peak was 
observed in some spectra for ALAAg, ALACu, and ALAA-
gCu compared to the spectrum of water or ALA (Moreira 
et al. 2009).

Fig. 3   TEM images of a ALAAgNPs, b ALACuNPs and c ALAAgCuNPs
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Figure 8a compares the best values obtained for the 
vigor index (3rd, 6th, and 10th days). The results show that 
in all situations, ALA or ALANPs primed seeds presented 
better results than hydropriming seeds, and ALAAg and 
ALACu presented better results than ALA for vigor index. 
Vigor index on 3rd day for ALA and ALANPs group, com-
pared with the water group, increased around 1.6 fold. On 
the 6th and 10th days, the ALA group increased by about 
1.7-fold compared to the water group, while the increase 
was more than twofold for the ALAAgNPs group.

Figure 8b compares the best values obtained for the 
fluorescence intensity (669 nm) of chlorophyll extracted 
from samples (10th day) of controls and ALANPs groups. 
The fluorescence measurements indicated the best results 
for ALAAgCu primed seeds. ALA, ALAAg, ALACu, and 
ALAAgCu fluorescence intensities increased 1.4, 3.3, 
3.2, and 4.2-folds, compared with the water group. So, 

the result indicated that ALANPs at least duplicated the 
seedling chlorophyll intensity compared to ALA.

Effect of ALANPs SPR Band in the Function of H2O2 
Concentration

Figure 9a–c show UV–Vis spectra for (a) ALAAg, (b) 
ALACu, and (c) ALAAgCuNPs solutions measured after 
the priming process. Figure 9d, e, and f show the effect of 
increased H2O2 concentration over the ALAAg, ALACu, 
and ALAAgCu SPR bands. A decline in the SPR band was 
observed as H2O2 concentration increases. Similarly, NPs 
solution after 24 h priming, showed a similar decrease in 
SPR bands (Fig. 9a–c).

Fig. 4   The germination rate of 
sunflower seeds on the 6th and 
10th days after priming with 
water, ALA, ALAAgNPs, ALA-
CuNPs, and ALAAgCuNPs 
with 100, 50, 25, and 12.5% 
dilutions
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Discussion

In this work, sunflower seeds were subject to priming 
with water, ALA, and aminolevulinic acid nanoparti-
cles. ALANPs synthesized by the photoreduction method 
presented good optical properties, stability, and sizes of 
around 5 nm (CuNPs) and 30 nm (AgNPs). Silver nano-
particles were more stable than copper or copper-silver 
nanoparticles. Indeed, copper has inherent instability 
under atmospheric conditions, which makes it prone to 
oxidation (Gawande et al. 2016).

Nanoparticles (NPs) interacted with the seed coat existing 
pores (1.6–4.6 nm), either enlarging those pores or forming 
new ones (Mishra and Singh 2015), which ultimately altered 
membrane fluidity. In the case of bimetallic ALAAgCuNPs 
we hypothesize that the smaller CuNPs interacted with the 
seed coat creating small dimples, that were enlarged by the 
AgNPs.

The stress imposed on the membrane by the presence 
of NPs probably induced the generation of hydrogen per-
oxide (H2O2) (Shin and Schachtman 2004). This process 
occurs once plasma membrane NADPH oxidase produces 
the superoxide anion (O2 − •) (Dynowski et  al. 2008). 

Fig. 5   a Vigor index (Vi) 
and b Allometric Coefficient 
(AC) obtained for water, ALA, 
ALAAg, ALACu, and ALAA-
gCu primed samples in 3rd, 6th 
and 10th days. ns non-signifi-
cant; *significant at p < 0.05; 
**significant at p < 0.01; 
***significant at p < 0.001
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Fig. 6   a Excitation and 
fluorescence spectra obtained 
with excitation at 430 nm or 
434 nm of chlorophyll extracted 
from seed primed with ALA 
compared with chlorophyll 
fluorescence obtained directly 
on the cotyledons, respec-
tively. b Comparison between 
chlorophyll emission spectra in 
cotyledons of seeds primed with 
water, ALA, ALAAg, ALACu, 
and ALAAgCu
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Short-lived superoxide anions generate external H2O2. 
Plasma membrane aquaporins from plants facilitate the dif-
fusion of H2O2 (Shin and Schachtman 2004).

The result showed in Fig. 9 indicated that after priming, 
nanoparticles were eliminated from the solutions. So, part of 
the NPs overcome the membrane, and part were dissociated 
in the primer solution. It is known that H2O2 is responsible 
for the dissolution of nanoparticles. We hypothesized that 
an increased concentration of H2O2 due to the induction of 
stress by NPs on the membrane led to the ALANPs disso-
ciation forming metal ions and releasing ALA (Fig. 9d–f) 
(He et al. 2012; Mahakham et al. 2017; Zarif et al. 2020). 
ALA acted in chlorophyll metabolism while metal ions acted 
as essential micronutrients for normal plant metabolism 
(Sharma and Agrawal 2005; Krizkova et al. 2008).

Water uptake induced higher metabolic activity of seeds 
during the initial imbibition phase (Carpita et al. 1979) 
(Navarro et al. 2008). Mitochondria produces oxidative 

ATP by reducing molecular oxygen (O2) to water in the 
electron transport chain. The superoxide radical produced 
in the mitochondria (Bailly et al. 2008) rapidly induces 
H2O2 which acted as a signaling molecule with phyto-
hormones activating germination-related enzymes like 
α-amylase involved in the breaking of seed dormancy 
(Dayem et al. 2017; Rai-Kalal et al. 2021). The emergence 
of the radicle that occurred between two and three days 
after priming, except for the water group, was due to the 
formation of such enzymes.

Seeds primed with ALANPs lose their seed coat and 
pericarp more easily than ALA and water-primed seeds 
on the 6th day. As indicated in Fig. 4, on the sixth day, 
the hypocotyl emerged, and cotyledons became green. In 
the root part, secondary roots began, mainly in ALANPs 
primed seeds. On the 10th day, roots, hypocotyles, and 
green cotyledons undergone significant changes.

Fig. 8   Comparison between 
a Vi (3rd, 6th, and 10th days) 
and b fluorescence inten-
sity (669 nm) of chlorophyll 
extracted from two samples 
(10th days) for water, ALA, 
ALAAg, ALACu, and ALAA-
gCu
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Seeds primed with ALANPs exhibited faster growth when 
compared to those hydroprimed treatments (Fig. 5), and this 
has been confirmed by similar studies (Younis et al. 2019; 
Thongmak et al. 2022). ALANPs increased seed germina-
tion and vigor index. The vigor index was improved after six 
days for ALACu (12.5%), ALAAg (100%), and ALAAgCu 
(12.5%). On the 10th day, the best results were obtained for 
ALAAg (100%) and ALACu (12.5%). Our study shows that 
NPs or silver ions released from the NPs did not result in 
toxicity to seedling and no oxidative damage to biological 
molecules was observed. However, copper ions in higher 
concentrations in ALACuNPs and ALAAgCuNPs resulted 
in lower values of vigor index.

ALA and ALANPs groups had reduced AC compared 
to the water group on the 10th day after priming (Fig. 5b). 
Seeds in these groups had longer roots and were visually 
more ramified.

ALA molecule on the surface of ALANPs was released 
inside the cell cytoplasm and metabolized to chlorophyll 
with insertion of magnesium ions (Mg2+) in the PpIX 
structure(Reinbothe and Reinbothe 1996; Hotta et al. 1997; 
Akram and Ashraf 2011; Wu et al. 2019; Tan et al. 2022). 
The release of Ag2+ and Cu2+ ions with NPs dissolution, and 
same time an increased PpIX due to ALA, allowed beside 
chlorophyll also the chlorophyll-Ag2+ and chlorophyll-Cu2+ 
complexes production (Zengin and Kirbag 2007). In these 
cases, a shift in chlorophyll emission peak was observed 
(Fig. 5b), and the cotyledons presented a dark green color.

In cotyledons, only chlorophyll a was observed (Fig. 6). 
The chlorophyll emission spectra obtained from the whole 
seedling, cotyledons, and hypocotyles, (Fig. 7) indicated 

the presence of chlorophyll a, and b. Chlorophyll a is the 
principal pigment in photosynthesis, whereas chlorophyll 
b is the accessory pigment, collecting energy to pass into 
chlorophyll a. The redshift in the chlorophyll emission 
band in the ALAAg (50%) and ALAAgCu (25 and 12.5%), 
was probably due to magnesium replacement by silver or 
copper ions in the chlorophyll molecule.

The higher emission intensity of chlorophyll extracted 
from the seed was obtained from primed samples with 
ALAAg (50%) and ALAAgCu (12.5%), indicating that 
part of the chlorophyll was stored in hypocotyls to be used 
in stress conditions. Compared to the chlorophyll fluo-
rescence intensity recorded directly from the cotyledons, 
ALA 100% was found to be lower than ALA 50%, 25%, 
and 12.5%. This result indicated that solutions containing 
high ALA concentration leaded to inhibition of chloro-
phyll probably due to the disequilibrium in ROS produc-
tion (C. P. Zhang et al. 2013; Li et al. 2019). The low chlo-
rophyll fluorescence intensity in the ALAAgCu (100%) 
could be due to the decrease in chlorophyll a and b and 
the increase in Ag or Cu contained chlorophyll molecules 
or toxicity caused by the presence of higher concentration 
of metal ions.

Figure 10 summarizes the priming process. Root devel-
opment and enhancement in chlorophyll synthesis were 
improved by seed ALANPs priming. Besides, fast seed 
germination can enhance crop activity by stimulating the 
resistance of plants against abiotic and biotic stresses. This 
easy method has the potential to significantly improve the 
photosynthetic process of seedlings.
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Conclusions

Aminolevulinic acid nanoparticles (ALANPs) are easily 
synthesized using aminolevulinic acid and the photore-
duction process by a clean and green method. ALANPs 
priming enhances the rate and percentage of seed germi-
nation, improves root growth, vigor, and increases chloro-
phyll content. ALANPs combine the effects of ALA and 
nanoparticles simultaneously. H2O2 generation in priming 
processes dissolves NPs releasing ALA and metal ions. 
Internalized NPs contribute to H2O2 generation, regu-
lating seed dormancy and germination. The best results 
in terms of the vigor index compared with hydroprimed 
seeds were obtained with ALA (~1.7-fold), ALAAg (~2.2-
fold), ALACu (~2.3-fold), and ALAAgCuNPs (~1.8-fold). 
Regarding chlorophyll content, ALA, ALAAg, ALACu, 
and ALAAgCu fluorescence intensities increased 1.4-fold, 
3.3-fold, 3.2-fold, and 4.2-fold, respectively, compared 
with the water group. Silver and copper can replace the 
core magnesium ion in chlorophyll molecules, resulting in 
chlorophyll-metal complexes, and this was manifested by 
a shift in the chlorophyll emission band. Due to the char-
acteristics of ALANPs, many other potential applications 
in agriculture are possible as fertilizers and pesticides, 
including the action of photodynamic activity. These sys-
tems can improve productivity and food quality, avoiding 
the drawbacks of conventional agriculture, and ensuring 

food security of farmers, consumers, and maintaining the 
sustainability of the environment.
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