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The growth of protrusions at the boundary of a recrystallized grain
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Abstract

The growth of mesoscopic protrusions at originally straight and circular boundaries of two-dimensional recrystallized grains is sim-
ulated by numerical integration of a modified form of the classic kinetic equation for boundary migration. The modified equation relates
the boundary velocity in a fixed direction to the boundary curvature and to a non-uniform excess strain energy density in the matrix due
to dislocation walls. Calculations are made for an array of equispaced dislocation walls perpendicular to the original boundaries, which
migrate, changing their shape, while absorbing the dislocation walls. The strain field of the walls is represented by a sinusoidal function.
The time evolution of the boundary shape is calculated for unbounded dislocation walls and for a simplified network of staggered rows of
dislocation walls. Steady and scaled regimes of the boundary shape may be reached, which are characterized in detail.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the recrystallization of work-hardened metals and
alloys, the boundaries of the recrystallized grains migrate
under the combined effects of boundary energy (boundary
curvature) and of the excess strain energy density in the
surrounding matrix [1–3]. A recrystallized grain has a
low density of dislocations compared to that in the matrix,
where the dislocations are frequently arranged in walls,
particularly at low-angle boundaries (or sub-boundaries)
that formed in the recovery stage preceding recrystalliza-
tion. As the recrystallized grain boundary advances into
the matrix it absorbs the dislocations ahead and maintains
the strain energy density difference that compensates
for the increase in the boundary area. Since the distribu-
tion of dislocations in the matrix is highly non-uniform,
the moving boundary develops protrusions (also termed
serrations or undulations) into the matrix. As examples,
Kassner and McMahon [4] and Drury and Humphreys
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[5] indicated that protrusions develop at the junctions
between subgrain boundaries and high-angle grain bound-
aries during recrystallization of Al. Mesoscopic protru-
sions of amplitudes between 0.5 and 50 lm have been
observed in the recrystallization (both static and dynamic)
of pure metals and solid solutions [6–10] and also in alloys
containing precipitates [11–14]. In the latter, there is a cor-
relation between the occurrence of serrations and the mor-
phology and mechanisms of growth of the precipitates.
Recently, the in situ growth of recrystallized grains in
the bulk of commercially pure Al was observed with a
new three-dimensional X-ray diffraction microscope [15].
A very heterogeneous growth pattern was observed, with
irregular growth protrusions of different amplitudes and
widths.

The purpose of this paper is to model the formation and
time evolution of protrusions in two-dimensional (2D)
grain boundaries during their migration. To the authors’
knowledge, the evolution of such protrusions has never
been modelled before. For initially straight and circular
boundaries, the boundary shape as a function of time is
obtained by integration of an appropriate form of the
kinetic equation derived in the present work.
rights reserved.
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Fig. 1. Sinusoidal bulk pressure for unbounded dislocation walls
contacting an initially: (a) flat boundary and (b) circular boundary. (c) A
simplified network of dislocation walls at an originally flat boundary.
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Two types of arrangement of the dislocation walls
around the recrystallized grain are considered. In one,
shown in Fig. 1(a) and (b), the walls are identical,
unbounded, equally spaced, and perpendicular to the
straight or circular boundary. For initially straight bound-
aries, a more realistic arrangement of the dislocation walls
in the matrix (Fig. 1(c)) is also used as a simplified model of
a network of walls.

2. The kinetic equation

The kinetic equation of 2D boundary migration under
the effects of boundary energy and a bulk energy density
difference F is [16,17]

vn ¼ M
r
R
þ F

� �
ð1Þ

where vn is the local boundary velocity along its normal n
directed to the grain of largest bulk strain energy; R is
the local radius of curvature (positive or negative); r is
the boundary energy per unit area; and M is the boundary
mobility. The strain energy density difference F, i.e. the ex-
cess energy density of the matrix in relation to the recrystal-
lized grain, varies along the boundary and has ‘peaks’ at
the intersections with dislocation walls, decaying to small
values (‘valleys’) halfway between them. This excess energy
density F (or driving pressure) will be represented by a
sinusoidal function of a space variable. Because the strain
field of dislocation walls is short-ranged, a more realistic
description of F would be a stepped function with narrow
periodic peaks, but this is more difficult to handle
analytically.
For an originally straight boundary, rectangular coordi-
nates x and y were used, with the boundary initially at
y = 0, and the recrystallized grain at y < 0 (Fig. 1(a)).
For equispaced unbounded dislocation walls (Fig. 1(a)),
the driving pressure F is

F ¼ F 0 þ DF sin
2px
k

ð2Þ

where F0 and DF are the mean value and amplitude of F,
respectively, and the wavelength k equals the separation
distance between dislocation walls. The boundary shape
is defined by y = y(x, t) where t is time.

For an initially circular boundary of radius r0 enclosing
the recrystallized grain, polar coordinates were used, with
origin at the centre of the boundary (Fig. 1(b)). For equi-
spaced unbounded dislocation walls (Fig. 1(b)), the driving
pressure F is

F ¼ F 0 þ DF sin ðnhÞ ð3Þ
where n (n > 1) is an integer. In this case, the boundary
shape is given by r = r(h, t), where h is the angular coordi-
nate, defined relative to an arbitrary radial direction x

(Fig. 1(b)).
For the initially straight boundary, the network of dislo-

cation walls referred to above is characterized by the inter-
wall separation k in each row (Fig. 1(c)) and by the width w

of one row. The walls in successive rows are translated by
k/2. The driving pressure F acting on a boundary traversing
rows 1, 3, 5, . . . of dislocation walls (row 1 is adjacent to the
boundary) is given by Eq. (2). For a boundary traversing
rows 2, 4, 6, . . . the driving pressure is

F ¼ F 0 þ DF sin
2p xþ k

2

� �
k

ð4Þ

The peaks and valleys of F are thus abruptly translated by
k/2 in successive rows. In reality, there will be other dislo-
cation walls connecting those in successive rows (e.g. a
hexagonal network), but they will not be considered.

While the driving pressure r/R in Eq. (1) pushes the
boundary to its centre of curvature, the bulk driving pres-
sure F pushes it into the matrix. This requires that
F0 P DF > 0. The sign of the radius of curvature R of the
boundary is positive if its centre of curvature is in the
matrix and vice versa.

To determine the boundary evolution, it is sufficient to
calculate the velocity component along the y or r directions
in either boundary shapes (straight or circular). This strat-
egy, described below, is introduced for the first time in the
present paper and greatly simplifies the numerical solution
to the kinetic equation. In the case of the initially straight
boundary in the x � y plane, the boundary curve is
assumed to be a function of the x coordinate only. There-
fore, it can be parametrically represented by f = xex +
y(x,t)ey, where t is time and ex and ey are unit vectors.
The boundary velocity is simply

V ¼ of

ot
¼ oy

ot
ey ð5Þ
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Since the normal vector to the boundary is
n ¼ ð1þ _y2Þ�1=2ð� _yex þ eyÞ, where _y ¼ oy=ox, the normal
boundary velocity vn is calculated by

V :n ¼ vn ¼
oy
ot
ð1þ _y2Þ�1=2 ð6Þ

Finally, Eq. (6) is substituted in Eq. (1), in which the radius
of curvature is calculated by the well-known relation
R ¼ ð1þ _y2Þ3=2

=€y (e.g. Ref. [18]), yielding, for F given by
Eq. (2)

oy�

ot�
¼ €y�ð1þ _y�2Þ�1 þ ½F �0 þ DF � sin ð2px�Þ�ð1þ _y�2Þ1=2 ð7Þ

where we introduced reduced dimensionless quantities
x* = x/k; y* = y/k; t* = Mrt/k2; F* = kF/r; and
DF* = kDF/r. Similarly, for an initially circular boundary,
the following kinetic equation yielding the radial velocity,
or*/ot*, can be derived from Eqs. (1) and (3):

or�

ot�
¼ €r� � 2_r�

r�
� r�

� �
ðr�2 þ _r�2Þ�1

þ ½F �0 þ DF � sin ðnhÞ� ðr
�2 þ _r�2Þ1=2

r�
ð8Þ

where _r� ¼ or�=oh. The reduced quantities in this equation
are similar to those defined above, but r0 (the initial radius
of the boundary) replaces k (e.g. r* = r/r0; F �0 ¼ r0F 0=r).
The first term on the right-hand side of Eq. (8) is the cur-
vature, 1/R, of a curve r(h) in polar coordinates (e.g. Ref.
[18]).

Typical values of the average stored energy of cold work
F0 for common metals range between 2 · 106 and
10 · 106 J m�3 depending on the metal and the degree of
deformation, while r (the energy of a high-angle boundary)
is typically in the interval 0.2–0.5 J m�2. For interspacings
k between dislocation walls in the interval 1–50 lm, the
estimated extreme values of F �0 ¼ kF 0=r are 5 and 250.
For a growing recrystallized grain, the reduced amplitude
DF* ranges between 0 and F �0 (DF �=F �0 in the interval
[0,1]), as pointed out above.
3. Solution of the kinetic equations

In both cases under discussion the evolving boundaries
have the period of the driving force F. Hence, the implicit
formulation of the finite difference method [19] was used to
solve Eqs. (7) and (8) in one period, with initial conditions
y*(x*,0) = 0 and r*(h, 0) = 1, respectively. The first and sec-
ond partial derivatives in relation to the spatial coordinates
were discretized by central differences. After discretizing
the equations, the resulting non-linear system of algebraic
equations was solved iteratively by the following steps:
(1) the system was transformed into a tridiagonal linear
system by keeping some terms constant at their latest iter-
ation values; (2) the linearized system was solved by the
Thomas algorithm [19]; and (3) all terms that were kept
constant in the previous steps were updated, and steps (1)
and (2) were repeated. This iterative process stopped when
the maximum relative difference between the values of the
grain boundary position (i.e. y* or r*) in two consecutive
iterations was lower than 10�7. The time step for the
marching down process of the numerical method was
adjusted to be the largest value that still guaranteed conver-
gence of the iterative process. The adopted time step values
were always smaller than 10�5. After examining the numer-
ical solution for meshes of an increasingly large number of
nodes, a mesh of 801 equally spaced nodes was found to
yield a mesh-independent solution and was, therefore,
adopted.

The time evolution of the boundaries obtained by this
numerical solution was compared with those calculated
with an alternative method recently developed by the
authors [20], showing excellent agreement. This alternative
method is more robust, being capable of tracking the
migration of several types of 2D boundaries, but needs a
2D mesh of cells to work. Solutions to Eqs. (7) and (8),
however, can be readily obtained using standard numerical
methods and a one-dimensional mesh of nodes. Neverthe-
less, they are limited to model the migration of boundaries
that can be described as a function of only one of the
coordinates.

4. Results and discussion

The results for the initially flat (straight) boundary mov-
ing through unbounded dislocation walls and through a
network of walls are first described in Sections 4.1 and
4.2. Section 4.3 deals with the case of an initially circular
boundary and Section 4.4 presents an attempt to compare
some of the results with experiments reported in the litera-
ture. A comparison with other published theoretical results
was not possible, because, to the authors’ knowledge, these
are not available in the literature.

4.1. Initially straight boundaries: unbounded dislocation

walls

The evolution of an initially straight boundary sub-
jected to a time-independent bulk driving pressure F given
by Eq. (2) is shown in Fig. 2(a) for F �0 ¼ 5 and
DF �=F �0 ¼ 0:5. Periodic protrusions develop, which are
similar to those experimentally observed in cross-sections
of three-dimensional recrystallized grains. At sufficiently
long times (t�b0:07 in Fig. 2(a)), the boundary shape
remains invariant, i.e. reaches steady state: the undulated
boundary simply translates in the y-direction, with a uni-
form and time-invariant velocity oy*/ot*. In the numerical
calculations, the steady-state amplitude was considered as
the one prevailing when the change in protrusion ampli-
tude during one time step became comparable to the
round-off errors of the calculations. The evolution of the
amplitude to this steady-state value is shown in Fig. 3
(dashed curves) for two pairs of values of F �0 and
DF �=F �0. Note that DF �=F �0 is a measure of the sharpness
of the driving pressure near the peaks.



Fig. 2. Time evolution of an initially straight boundary in a fixed reference
frame for: (a) unbounded dislocation walls with F �0 ¼ 5 and DF �=F �0 ¼ 0:5;
(b) dislocation wall network with F �0 ¼ 5 and DF �=F �0 ¼ 0:5 (y�S < 1); and
(c) dislocation wall network with F �0 ¼ 10 and DF �=F �0 ¼ 1 (y�S > 1). Time
intervals are 0.02 for (a) and (b), and 0.01 for (c).

Fig. 3. Total amplitude of boundary protrusions grown at an initially
straight boundary as a function of time and position, for unbounded walls
and network: (a) F �0 ¼ 5, DF �=F �0 ¼ 0:5 (y�S < 1); (b) F �0 ¼ 10, DF �=F �0 ¼
1 (y�S > 1). In (a) the boundary reaches steady state within a row of
dislocation walls, while in (b) steady state is not reached.

Fig. 4. Steady-state shapes of initially flat boundaries migrating through
parallel unbounded dislocation walls (full line), and maximum amplitude
shapes (dashed line) for boundaries moving through a dislocation wall
network for several mean values, F �0, and two relative amplitudes DF �=F �0:
(a) 0.5 and (b) 1.
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Fig. 4 shows the steady-state boundary shapes (plotted
in a frame moving with the boundary) for two values of
DF �=F �0 and various values of F �0. As F �0 or DF* increases,
the steady-state shapes become increasingly asymmetric:
valleys are deeper than peaks, with increasing curvature
jv at their bottoms. The height and curvature of the peaks
jp are always smaller than those of the valleys. The differ-
ence in curvature Dj = jjvj � jjpj can be obtained from
Eq. (7) by setting _y ¼ 0. The result is Dj* = 2DF*, where
j* = jk, indicating that larger driving force amplitudes
result in less symmetrical shapes.

The plots of Fig. 5 show the effects of F �0 and DF* on: the
amplitude of the protrusions Dy* in the steady state,
defined as the separation between extreme points in the y

direction (Fig. 5(a)); the steady-state (time-invariant)
boundary velocity, V �S ¼ ðoy�=otÞS (Fig. 5(b)); and the
reduced distance y�S that the boundary moved to reach
the steady state (Fig. 5(c)). This distance was defined as
the boundary displacement at x* = 0 until the protrusion
amplitude reached 90% of the final steady-state amplitude.
This distance is more easily determined than the exact one
to reach the steady-state shape, which is strongly affected
by round-off errors.

The amplitude of the protrusions at fixed F �0 (Fig. 5(a))
increases both with DF � (with DF � 6 F �0) and with DF �=F �0.



Fig. 5. Effects of mean value F �0 and relative amplitude DF �=F �0 of the sinusoidal driving pressure acting on an initially straight boundary: (a) steady-state
amplitude of protrusions for unbounded dislocation walls (full lines) and maximum amplitude for network of dislocations (dashed lines); (b) steady-state
velocity for unbounded dislocation walls; (c) distance moved to reach steady state for unbounded dislocation walls.
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The variation with F �0 is more significant, with the amplitude
of the protrusions, Dy* = Dy/k, increasing by orders of mag-
nitude when F �0 changes from 0.1 to 50 at DF �=F �0 ¼ 1. Note
that DF �=F �0 ¼ DF =F 0 is independent of the wall separation
k. For a uniform strain energy density difference, DF* = 0,
the boundary steady-state velocity is V �S ¼ F �0. This velocity
is little dependent on the amplitude, DF*. Generally, the
steady-state velocity is virtually unchanged in the presence
of protrusions, except for large F �0, when the boundaries with
larger protrusions move more rapidly and V �S > F �0. Finally,
the length y�S travelled by the initially straight boundary to
reach steady state increases with increasing F �0 and, again,
increases with DF* only for large F �0 values. This distance is
important in the analysis that will be presented below of
boundary migration under a network of dislocation walls,
because it shows when the boundary may reach steady state
within one row of walls.

4.2. Initially straight boundaries: network of dislocation
walls

All calculations were made for a symmetrical network
with w = k (see Fig. 1(c)). The ends of the dislocation walls
are then at y* = 0,1,2, . . . with the initially flat boundary
at y* = 0. Examples of boundary migration are shown in
Fig. 2(b) and (c) for two pairs F �0, DF �=F �0. As the bound-
ary enters a new row of dislocation walls, the driving pres-
sure F is shifted abruptly in the x* direction by k/2 and the
boundary begins to invert its amplitude, which oscillates
between a minimum (close to zero) and a maximum.

There are two different situations illustrated in Fig. 2(b)
and (c): (i) the boundary reaches steady state while travers-
ing one row of walls (Fig. 2(b)) or (ii) the boundary does
not reach steady state within the row (Fig. 2(c)), i.e. were
the row width w larger, the boundary amplitude would
have continued to increase before entering a new row. To
predict either type of behaviour, the results for the disloca-
tion wall network must be compared with those for the
unbounded dislocations walls, as given in Fig. 3. In
Fig. 3(a), the boundary amplitude for the wall network
increases to the steady-state amplitude, which equals the
steady-state amplitude for unbounded walls. In this case,
the row width is sufficiently large to allow the steady-state
shape to be reached. In Fig. 3(b), however, the boundary
enters a new row at y�ðx�¼0Þ ¼ 1 before the steady-state
amplitude had been reached. Consequently, its maximum



Fig. 6. Calculated time evolution of an initially circular boundary for
n = 4 (angular period p/2), F �0 ¼ 10 and DF �=F �0 ¼ 1: (a) not scaled and
(b) scaled by the r* coordinate at h = 0 (see Fig. 1).
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amplitude is smaller than that of the steady state reached
with unbounded walls.

From this discussion, it is possible to predict the behav-
iour of the boundary in a dislocation wall network by anal-
ysing its behaviour in the case of unbounded dislocation
walls. When the distance travelled by the boundary to
reach steady state for unbounded walls outweighs the
row width of the wall network, i.e. y�S > 1, steady state is
not reached and the maximum boundary amplitude is
smaller than that of the steady state. Otherwise (y�S 6 1),
steady state is reached within each row.

When the boundary faces unbounded walls, the reduced
distance to reach steady state, y�S, is given as a function of
F �0 and DF �=F �0 in Fig. 5(c). Notice that y�S < 1 when F �0 ¼ 5
and DF �=F �0 ¼ 0:5, indicating that the boundary in
Fig. 2(b) reaches steady state while traversing one row of
walls. The maximum amplitude of the protrusions is, in
this case, equal to that of the steady state for unbounded
walls (Fig. 2(a)). In contrast, y�S > 1 when F �0 ¼ 10 and
DF �=F �0 ¼ 1, and the boundary does not reach steady state
while traversing one row, as can be seen in Fig. 2(c). The
maximum amplitude reached is then smaller than that of
steady state for unbounded walls. The amplitudes in the
two cases (unbounded walls and wall network) are shown
in Fig. 5(a) as a function of F �0 and DF �=F �0. For F �0a5,
steady state is never reached for the wall network and the
maximum boundary amplitude is smaller than that of the
steady state of unbounded walls.

4.3. Initially circular boundaries: unbounded dislocation
walls

The evolution of initially circular boundaries subjected
to the sinusoidal driving pressure given by Eq. (3) with peri-
odicity defined by n = 4 and n = 40 is shown in Fig. 6 for
F �0 ¼ 10 and DF �=F �0 ¼ 1. The radial velocity of each point
of the boundary becomes constant after some time, but
changes from point to point. Therefore, in contrast to the
initially flat boundary, the initially circular boundary does
not reach steady state (i.e. a time-invariant shape), as shown
in Fig. 6(a). It was found, however, that the successive
boundary shapes become self-similar at sufficiently long
times, i.e. a scaling regime is reached in which the boundary
shapes become scaled by a radial coordinate at, say, h = 0.
In terms of the similarity variable r*/r*(h = 0, t*) the bound-
ary shape remains invariant (Fig. 6(b)). It was found that,
for fixed n, the shapes in the scaling regime depend only
on DF �=F �0 and not on DF* or F �0 separately. These scaled
shapes are shown in Fig. 7 for various values of DF �=F �0
and for n = 4 and 40.

As for the initially flat boundary, the curvature at the
valleys increases with increasing DF �=F �0 and seems to tend
to infinity (cusp-like valley). The amplitude of the
undulations

Dr�

r�ðh ¼ 0; t�Þ ¼
r�max � r�min

r�ðh ¼ 0; t�Þ
in the scaling regime increases monotonically with increas-
ing DF �=F �0 as shown in the plot of Fig. 8 for n = 4.

4.4. Comparison with experimental results

A comparison between experiments and the theoretical
results obtained in the present work is attempted in this
section. However, conclusions must be drawn carefully,
since the experimental results of boundary protrusion
amplitudes and the estimates of driving pressures are accu-
rate only to an order of magnitude owing to many sources
of error. For example, the measured amplitude of protru-
sions at a grain boundary can be significantly changed by
the relative inclination of the observation plane, represent-
ing an important source of error. Moreover, the detailed
structure of cells/subgrains establishing the driving pres-
sure along the grain boundary is usually not reported when
protrusions are observed, allowing only crude estimates of
this pressure.

The work of Henshall et al. [21] on the dynamic recrystal-
lization of an Al–5.8 at.% Mg alloy deformed in torsion at
698 K contains sufficient data (specially as regards the sub-
grain structure) to compare with the present theoretical
results. The boundary protrusions shown in the micrograph



Fig. 7. (a) Boundary shapes in the scaling regime of an initially circular
boundary for different relative amplitudes of driving pressure (DF �=F �0)
and two different angular periods (2p/n). (b) Magnification of boundaries
for n = 40 and the same DF �=F �0 as in (a).

Fig. 8. Scaled amplitude of protrusions in the scaling regime of an initially
circular boundary as a function of the relative driving force amplitude for
n = 4.
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of Fig. 6(c) of their work were chosen for the comparison,
because protrusions are observed in nearly all grain bound-
aries and their amplitudes and wavelengths are much smal-
ler than their separation distances. A wide range of
protrusion amplitudes Dy(�10–80 lm) and wavelengths k
(�100–130 lm) can be seen in the field included in the
micrograph. This might be an indication of the magnitude
of the errors involved in the determination of the protrusion
dimensions.

The range of protrusion amplitudes and wavelengths
corresponds to Dy* = Dy/k in the interval of 0.1–0.6. The
driving force originated from the hot-working process used
by Henshall et al. [21] is assumed to be mainly the energy
stored in the subgrain structure, which, for a strain
e � 1.1, has an average size dSGB � 8.8 lm. The average
measured misorientation across cells/subgrains was
hSGB � 1.3�. The energy per unit area of a subgrain bound-
ary of misorientation hSGB can be calculated from the
Read–Schockley equation [22] as

rSGB ¼ r
hSGB

15
1� ln

hSGB

15

� �� 	
� 0:090 J/m

2 ð9Þ

where the high-angle (h P 15�) grain boundary energy
r � 0.3 J/m2 and hSGB is expressed in degrees. Therefore,
the average energy density accumulated in the structure,
which equals the average driving pressure F0, can be esti-
mated as [22] F0 = (2/dSGB) rSGB � 2 · 104 J/m3. The re-
duced average driving pressure is F �0 ¼ kF 0=r � 7 for
Dy* = 0.1, and F �0 � 9 for Dy* = 0.6. Finally, the relative
driving force amplitudes, DF �=F �0, obtained from
Fig. 5(a), are approximately 0.3 and 1, respectively. These
are reasonable values, since DF �=F �0 ¼ 1 is the largest pos-
sible relative amplitude and corresponds to the maximum
concentration of driving pressure at the peaks, i.e. the for-
mation of sharp subgrain walls, which can indeed be ob-
served in the micrograph of Fig. 3(c) from Henshall et al.
[21]. In all, a fair agreement is observed between the results
from the present model and those reported by Henshall
et al. [21]. However, it is important to remember that the
model developed in this paper is a 2D model and that the
driving pressure F was assumed sinusoidal, which limits
its concentration at the peaks.

5. Concluding remarks

Protrusions at a migrating grain boundary arise when
there is a non-uniform strain energy density difference, F,
between the two grains separated by the boundary. Protru-
sions or serrations may also result from anisotropic bound-
ary energy and/or mobility, but these possibilities were not
contemplated in this study. In the growth of a recrystallized
grain, F (the excess strain energy density in the matrix) is
sufficiently large to overcome the surface energy increase
of the migrating boundary. This excess energy density
was represented by a sinusoidally varying F of mean value
F0, amplitude DF, and wavelength k, dependent on a single
space coordinate (y or r, respectively, for initially straight
(at y = 0) and circular (at r = r0) boundaries). For this sim-
ple F, the time evolution of the boundary was obtained by
numerical integration of an appropriate form of the classic
kinetic equation (Eq. (1)) for the velocity of the boundary
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along its normal, used in this paper for the first time. For
unbounded dislocation walls it was found that the migrat-
ing boundaries reach a steady-state shape or a scaled shape,
respectively, for the initially straight and circular bound-
aries, which were characterized in some detail.

When the boundary moves through the simplified net-
work of dislocation walls shown in Fig. 1(c), the maximum
amplitude is the same as that for unbounded walls (steady
state is reached) if the reduced length y�S < 1. When y�S > 1,
a steady state is not reached within a row and the maxi-
mum amplitude of the protrusions is smaller than that
for unbounded walls.

The high symmetry arrangements of dislocation walls
around the recrystallized grain and the simplified represen-
tation of their strain energy by a sinusoidal function are, of
course, great simplifications of reality: three-dimensional
grains, ‘random’ arrangement of the dislocation walls,
complex strain field dependent on more than one space var-
iable. In spite of those simplifications, the model used in
this paper highlights the main features of the growth of
protrusions in growing recrystallized grains and is in rea-
sonable agreement with experimental results.
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